tìm số nguyên tố p để p+14 và p+20 cũng là số nguyên tố
Tìm số nguyên tố p để p+14 và p+20 cũng là số nguyên tố có cách giải.
số 3 , ko chắc cậu đừng ghi nha việt hì hì
Nếu trong phạm vi 100 thì p bằng các số sau thỏa mãn:
3 , 17 , 23 , 47 , 53 , 59 , 83 , 89
Nếu trong phạm vi 1000 thì các số sau cũng thỏa mãn
3 , 17 , 23 , 47 , 53 , 59 , 83 , 89 , 137 , 179 , 257 , 263 , 293 , 317 , 353 , 359 , 419 , 443 , 557 , 587 , 593 , 599 , 719 , 809 , 839 , 863 , 977
Các bạn kiểm tra tiếp, từ 1000 đến 10000 có các số sau:
1019 , 1049 , 1103 , 1109 , 1217 , 1277 , 1283 , 1307 , 1409 , 1433 , 1439 , 1607 , 1733 , 1847 , 1973 , 1979 , 1997 , 2069 , 2267 , 2273 , 2357 , 2657 , 2663 , 2693 , 2699 , 2777 , 2837 , 3167 , 3299 , 3449 , 3527 , 3593 , 3617 , 3623 , 3677 , 3719 , 3833 , 4007 , 4079 , 4139 , 4493 , 4547 , 4583 , 4637 , 4643 , 4889 , 4937 , 4973 , 5087 , 5099 , 5393 , 5399 , 5417 , 5507 , 5639 , 5669 , 5807 , 6053 , 6197 , 6257 , 6323 , 6353 , 6359 , 6659 , 6689 , 6947 , 6977 , 7193 , 7703 , 7853 , 8039 , 8147 , 8273 , 8297 , 8447 , 8609 , 8627 , 8693 , 8699 , 9029 , 9137 , 9323 , 9377 , 9419 , 9629 , 9719 , 9767 , 9887
Tìm số nguyên tố p để p+14 và p+20 cũng là số nguyên tố ? Có cách giải.
Mình cần cách giải cơ mà ! Chưa chắc chỉ có p = 3 đâu !
Cách giải, không có thì đừng trả lời cho tôi nhờ ! Thôi tắt đây, ở đây khó chịu quá !
tìm số p nguyên tố sao cho p+14 và p+20 cũng là các số nguyên tố
p = 3
Nếu là ở Violympic thì chỉ ra đáp án được thôi !
nếu p ko thể bằng 2 vì nếu p=2
thì p+14=2+14=16 suy ra ko phải số nguyên tố
p+20=2+20=22 suy ra cũng ko phải số nguyên tố
nếu p=3 thì
p+14=3+14=17 là số nguyên tố
p+20=3+20=23 cung là số nguyên tô
nếu p>3 thì mâu thuẫn với đề bài và ko tim ra được p
Tìm số nguyên tố P , để :
a, P+2 và P+14 cũng là các số nguyên tố
b, P+6 ; P+8;P+12 ;P+14 cũng là các số nguyên tố
Tìm số nguyên tố p để p+10 và p+14 cũng là số nguyên tố.
mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.
5 , Tìm P nguyên tố để:
a, ( P+10) và P+14 cũng là số nguyên tố
b, P+2;P+6 và P+8 cũng là số nguyên tố
a)
+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)
+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )
+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2
- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )
- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)
Vậy p = 3
a)
- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố
p + 14 = 3 + 14 = 17 là số nguyên tố
- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2
+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số
=> p = 3k + 1 (loại)
+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số
=> p = 3k + 2 (loại)
Vập p = 3
b)
- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số
=> p = 2 (loại)
- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số
=> p = 3 (loại)
- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố
p + 6 = 5 + 6 =11 là số nguyên tố
p + 8 = 5 + 8 = 13 là số nguyên tố
=> p = 5 (chọn)
- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1
p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số
=> p = 5k - 1 (loại)
Vập p = 5
Mình không biết phần b mình làm đúng không nữa!
Chúc bạn học tốt!
tìm số nguyên tố phong để
a,p+2 và p+10 cũng là số nguyên tố
b,p+10 và p+20 cũng là số nguyên tố
\(a)\)Vì \(p\)là số nguyên tố
\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)
\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )
\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )
\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:
\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )
\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )
Vậy \(p=3\)\(\left(đpcm\right)\)
\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố ) \(\Rightarrow\) ( loại )
Với \(p=3\Rightarrow p+10=3+10=13\)
\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố ) \(\Rightarrow\) ( chọn )
Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)
\(\Rightarrow\)\(p+20=3k+1+20\)
\(=\)\(3k+21=3\left(k+7\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))
\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )
Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)
\(\Rightarrow\)\(p+10=3k+2+10\)
\(=\)\(3k+12=3\left(k+4\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))
\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )
Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)
Tìm số nguyên tố P để P+10 và P+20 cũng là số nguyên tố
số đó là 3
3+10=13 là số nguyên tố
3+20=23 là số nguyên tố
hihi
nếu p = 2 thì p+10= 2+10=12 là hợp số(loại)
nếu p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố( thỏa mãn)
p + 20 = 3 + 20 = 23 là số nguyên tố( thỏa mãn )
nếu p > 3 p có dạng 3k+1 hoặc 3k+2 ( k thuộc số tự nhiên khác 0 )
trường hợp 1: p có dạng 3k +1 thì P + 20 = 3k+1 +20=3k+21= 3(k+7)chia hết cho 3 là hợp số ( loại ) (1 )
th2 : p có dạng 3k +2 thì p+10 = 3k+2 +10= 3k+12= 3(k+4) chia hết cho 3 là hợp số ( loại) (2)
từ(1) và (2) => p > 3 thì p ko thỏa mãn
vậy P chỉ có thể = 3
số đó là 3 vì
3+10=13 là số nguyên tố
3+20 =23 là số nguyên tố
Tìm tất cả giá trị của số nguyên tố p để: p + 10 và p + 14 cũng là số nguyên tố
Khi p = 2 => p + 10 = 12 (loại)
Khi p = 3 => p + 10 = 13 (tm)
p + 14 = 17 (tm)
Khi p > 3 => đặt \(\orbr{\begin{cases}p=3k+1\\p=3q+2\end{cases}}\left(k;q\inℕ^∗\right)\)
Khi p = 3k + 1 => p + 14 = 3k + 15 = 3(k + 5) \(⋮\)3 (loại)
Khi p = 3q + 2 => p + 10 = 3q + 12 = 3(q + 4) \(⋮\)3 (loại)
Vậy p = 3 là giá trị cần tìm