cho m,n là các số nguyên dươngtm mn+1 chia hết cho 24 cm m+n chia hết cho 24
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
*Mong các bạn giải hết cho mình nha*
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4
c/ (2n +2)12 = 24(n+1) chia hết cho 24
Chứng minh rằng với mọi số n ; m thuộc z :
a) (4n+3)^2 - 25 chia hết cho 8
b) (2n+3)^2 - 9 chia hết cho 4
c) (n+7)^2 - (n-5)^2 chia hết cho 24
d) m^2n^2 + 3m^2 + mn^2 + 3m chia hết cho n^2 + 3
e) m^2n^2 - 7m^2 - mn^2 + 7m chia hết cho m-1 và n^2-7
f) n^4 + 2n^3 - n^2 -2n chia hết cho 24
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
1/ Chứng minh rằng:
a) Tích hai số chẵn liên tiếp chia hết cho 8.
b) Tích ba số nguyên liên tiếp chia hết cho 6.
c) Tích năm số nguyên liên tiếp chia hết cho 120.
2/ Chứng minh rằng với mọi số nguyên m, n:
a) n3 + 11n chia hết cho 6.
b) mn (m2 - n2) chia hết cho 3.
c) n (n + 1) (2n + 1) chia hết cho 6.
3/ Cho m, n là hai số chính phương lẻ liên tiếp. Chứng minh rằng mn - m - n + 1 chia hết cho 192.
4/ Tích 3 số chẵn liên tiếp chia hết cho bao nhiêu?
5/ Cho p là số nguyên tố lớn hơn 3. Chứng minh: p2 - 1 chia hết cho 24.
6/ (HSG toàn quốc - 1970) Chứng minh rằng: n4 - 4n3 - 4n2 + 16n chia hết cho 3 với n là một số chẵn lớn hơn 4.
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.tích của 3 số nguyên liên tiếp chia hết cho 3.tích của 5 số nguyên liên tiếp chia hết cho 5.vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
(a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)12a chia hết cho 6.vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
sao dài yữ vậy trời???????????????????????????????????????
Cho m và n là các số nguyên,cmr:
a, n^2.(n-1) chia hết cho 12
b,n^2.(n^4-1) chia hết cho 60
c,mn(m^4-n^4) chia hết cho 30
d,2n(16-n^4) chia hết cho 30
Chứng minh rằng với mọi số nguyên m và n ta có 4mn(m^2 – n^2) chia hết cho 24
làm ntn z mn
Quy ước của riêng tôi :/ là kí hiệu chia hết
- - - - -- - -
A = 4mn( m² - n² ) = 4mn( m - n )( m + n )
G/S m , n có cùng số dư khi chia hết cho 2
Từ G/S => m - n :/ 2 => 4mn( m - n )( m + n ) :/ 8 (1)
G/S m , n không có cùng số dư khi chia cho 2
=> Một trong hai số phải chia hết cho 2 => mn :/ 2
=> 4mn( m - n )( m + n ) :/ 8 (2)
Từ (1) và (2) => A :/ 8
Ta chứng minh A :/ 3
Nếu một trong hai số m , n có một số chia hết cho 3 => mn :/ 3
=> A = 4mn( m - n )( m + n ) :/ 3 (3)
Nếu trong hai số m , n không có số nào chia hết cho 3
+ m , n có cùng số dư khi chia cho 3 => m - n :/ 3 => A :/ 3
+ m . n không có cùng số dư khi chia cho 3 thỏa mãn không số nào :/ 3 => m + n :/ 3 => A :/ 3
Từ hai G/S trên => A :/ 3
A:/ 3 , A:/ 8 , ( 8 , 3 ) = 1 => A :/ 24
CMR
n mũ 3-13n chia hết cho 6
n mũ 3+3n mũ 2+2n chia hết cho 6
n mũ 5-n chia hết cho 5
n lớn hơn 3 lớn hơn n nguyên tố
CM [n mũ 2-1] chia hết cho 24
n*[n+2]*25n mũ 2 chia hết cho 24
\(n^3-13n=n\left(n^2-1\right)-12n.\)
\(=n\left(n-1\right)\left(n-2\right)-12n\)
Vậy chia hết cho 6 vì
n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6
12n chia hết cho 6
CM : nếu m^2 + n^2 chia hết cho 3 thì m, n chia hết cho 3?
"Nếu m, n là 2 số nguyên dương và mỗi số đều chia hết cho 3 thì tổng m^2 + n^2 cũng chia hết cho 3"
CM định lí đảo của định lí trên.
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
ko bt đúng ko nữa hehe
Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3
Ta có: m^2+n^2= m^2-n^2 + 2n^2
=(m-n)(m+n) + 2n^2
Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3
Và: n chia hết cho 3 nên 2n^2 chia hết cho 3
Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3
Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3
Đúng thì t.i.c.k đúng đi bn
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế
giải các bài toán sau :
a) tìm số nguyên n sao cho n+2 chia hết cho n-3
b) tìm các giá trị nguyên của x để x-3 là ước của 13
c) tìm các giá trị nguyên của x để x-2 là ước của 111
d) tìm các số nguyên n sao cho 5 chia hết cho n+ 15
e) tìm các số nguyên n sao cho 3 chia hết cho n+ 24
f) tìm các số nguyên sao cho : ( 4x + 3 ) chia hết ( x-2 )
giúp mình với !!!
a)n=5
b)X=16;-10;2;4
c)x=113;39;5;3;1;-1;-35;-109
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
4x-3⋮x-2
--> 4(x-2)+5⋮x-2
--> 5⋮x-2 (vì 4(x-2)⋮ x-2)
-->x-2⋴Ư(5) =⩲1;⩲5
ta có bảng
x-2 | 1 | -1 | 5 | -5 |
x | 3 | 1 | 7 | -3 |
vậy x=1;3;7;-3 thì 4x-3⫶x-2