Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Trịnh Trung Kiên
22 tháng 12 2019 lúc 20:59

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM

Khách vãng lai đã xóa
Có ai chơi avatar musik...
Xem chi tiết
Carthrine
28 tháng 10 2015 lúc 20:45

a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7

\(\Rightarrow\) abcabc + 7 là hợp số

b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11

\(\Rightarrow\) abcabc + 22 là hợp số

Phan Minh Anh
Xem chi tiết
Super Kẹo
Xem chi tiết
★Čүċℓøρş★
29 tháng 10 2019 lúc 20:04

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

Khách vãng lai đã xóa
Super Kẹo
29 tháng 10 2019 lúc 20:16

Bạn làm đc câu b ko

Khách vãng lai đã xóa
Đen NTH
Xem chi tiết
Akai Haruma
5 tháng 7 2020 lúc 13:28

Lời giải:

Sử dụng công thức nội suy Newton:

$f(x)=a_1+a_2(x-2017)+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$ với $a_4$ nguyên dương, $a_1,a_2, a_3, t$ bất kỳ.

Ta có:
$f(2017)=a_1=2018$

$f(2018)=a_1+a_2=2019$

$\Rightarrow a_2=1$. Thay giá trị $a_1,a_2$ vào lại $f(x)$ thì:

$f(x)=x+1+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$

Do đó:

$f(2019)=2020+2a_3+2a_4(2019-a)$

$f(2016)=2017+2a_3+2a_4(2016-a)$

$\Rightarrow f(2019)-f(2016)=3+6a_4\vdots 3$ với mọi $a_4$ nguyên dương.

Cũng dễ thấy $3+6a_4>3$ với mọi $a_4$ nguyên dương

Do đó $f(2019)-f(2016)$ là hợp số (đpcm)

Vy Hoàng Tường
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
Nguyễn Anh Quân
11 tháng 1 2018 lúc 21:21

a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3

Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )

=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N

Tk mk nha

ST
11 tháng 1 2018 lúc 21:56

b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2

=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)

Mà 20172018 không chia hết cho 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài

Nguyễn Việt Long
Xem chi tiết
Galaxy
12 tháng 3 2018 lúc 20:26

hình như cái này đâu phải toán lớp 5 đâu bạn

Nguyễn Việt Long
12 tháng 3 2018 lúc 20:29

nhầm toán lớp 6

Trương Thị Viên
13 tháng 3 2020 lúc 15:47

12+13×14

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết