tìm số nguyên tố p sao cho p +4 và p+8 là các số nguyên tố
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
tìm các số nguyên tố p sao cho p+4 và p+8 là các số nguyên tố
p + 8 hơn p+ 4 là 4 đơn vị .
Ta tìm trong bảng số nguyên tố thì thấy có 2 số nguyên tố cách nhau 4 đơn vị như yêu cầu là 11 và 7
=> p + 8 = 11
p + 4 = 7
=> p = 7 - 4 = 11 - 8 = 3
Vậy p = 3
a . Tìm các số nguyên tố p sao cho p + 11 cũng là số nguyên tố .
b . Tìm các số nguyên tố p sao cho p + 8 và p + 10 cũng là số nguyên tố .
Tìm số nguyên tố p sao cho các số p + 4 và p + 8 cũng là số nguyên tố
xét thử :
Nếu p = 2 => p+2 = 4 ( loại )
Nếu p = 3 => p+4 = 7 và => p+8 = 11 (thỏa mãn )
Nếu p là số nguyên tố >3 => p không chia hết cho 3 => \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)
Nếu p có dạng p=3k+1
=> p+8 = 3k+1 + 8 = 3k+9 \(⋮\) 3 ( loại )
Nếu p có dạng p=3k+2
=> p+4 = 3k+2+4 = 3k+6 \(⋮\) ( loại )
Vây p=3
tìm số nguyên tố p sao cho cả p+4 và p+8 đều là các số nguyên tố.
*Nếu p=2 thì p+4=6 là hợp số(loại)
*Nếu p=3 thì:
+p+4=7
+p+8=11
=> Đều là số nguyên tố(chọn)
*Nếu p>3 thì p=3k+1 hoặc p=3k+2+
p=3k+1 thì p+8=3k+9 chia hết cho 3(loại)
p=3k+2 thì p+4=3k+6 chia hết cho 3(loại)
Vậy p=3
Bài 1; Tìm số nguyên tố p sao cho;
a) p+4 và p+8 là các số nguyên tố
b)2p^2+1 là hợp số
tìm số nguyên tố p sao cho p+4 và p+8 cũng là các số nguyên tố.
NHANH MÌNH TICK
*Nếu p = 2 thì p+4 = 2+4 = 6 là hợp số (loại)
*Nếu p=3 thì p+4 = 3+ 4 = 7 là số nguyên tố
p+8 = 3+8 = 11 là số nguyên tố (chọn)
*Nếu p>3,p là số nguyên tố thì p = 3k+1 hoặc p=3k+2
+)Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 là hợp số(loại)
+)Nếu p =3k+2 thì p+4 = 3k+2+4 = 3k+6 là hợp số (loại)
Vậy p=3
Do p thuộc N*(vì p là số NT) nên có 3 TH xảy ra:p chia hết cho 3, p chia cho 3 dư 1, p chia cho 3 dư 2
Nếu p chia 3 dư 1 suy ra p = 3k+1(k thuộc N*)suy ra p+8=3k+1+8=3k+9 chia hết cho 3
mà p>3suy ra p là hợp số suy ra loại (vì p là SNT)
Nếu p chia cho 3 dư 2 suy ra p=3k+2(k thuộc N*)suy ra p+4=3k+2+4=3k+6chia hết cho 3
mà p>3 suy ra p là hợp số suy ra loại (vì p là SNT)
Suy ra p chia hết cho 3 mà p là SNT suy ra p=3
Suy ra p+4=3+4=7,p+8=3+8=11(hợp lí)
Vậy p=3
tìm số nguyên tố p ,q
sao cho p+4 và p+10 là số nguyên tố
sao cho q+2 và q+8 là số nguyên tố
A ) nếu p=2 thì p+4=2+4=6(loại)
nếu p=3 thì p+4=3+4=7và p+10=3+10=13(thỏa mãn)
nếu p>3 thì ta có dạng p=3k+1 và p=3k+2
trường hợp 1: p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3 (loại)
trường hợp 2: p=3k+1 thì p+4=3k+1+4=3k+5
mà 3k+5=3k+3+2=3(k+1)+2 \(\Rightarrow\)p+10=3(k+1)+2+10=3(k+1)+12 (loại)
vậy p=3 thì p+10,p+4 là số nguyên tố
B)nếu q=2 thì q+2=2+2=4 (loại)
nếu q=3 thì q+2=3+2=5 và q+8=3+8=11 ( thỏa mãn)
nếu q>3 ta có dạng q=3k+1 và q=3k+2
trường hợp 1: q=3k+1 thì q+8=3k +1 +8=3k + 9 chia hết cho 3 ( loại)
trường hợp 2: q=3k +2 thì q+8=3k+2+8 =3k+10=3k+9+1=3(k+3)+1
\(\Rightarrow\)q+8=3(k+3)+1+8=3(k+3)+9 chia hết cho 3 ( loại)
vậy q=3 thì q+2,q+8 là số nguyên tố
1.Tìm số tự nhiên p sao cho p và p + 3 đều là số nguyên tố.
2.Tìm số nguyên tố p sao cho p + 4 và p + 8 đều là số nguyên tố.
Với p=2 ta được p+4=6(hợp số)(Loại)
Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM)
Làm nốt xét p khác 3 nhé!