Cho \(\hept{\begin{cases}a+b+c=2001\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{10}\end{cases}}\) Tính S = \(\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{a+c}\)
Cho
\(\hept{\begin{cases}a+b+c=abc\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\\a,b,c\ne0\end{cases}}\)
Tính \(\frac{1}{a^{2\:}}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Chúc bạn học tốt !!!
Chứng minh : \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\\a+b+c=abc\end{cases}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2}\)
Níuwqcwijnp
Bài 1: \(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=5abc\end{cases}CMR:P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le}1\)
Bài 2:\(\hept{\begin{cases}a,b,c>0\\a+b+c=9\end{cases}}\)Tìm GTNN \(P=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}}\)
Bài 2:
\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)
\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)
\(\Rightarrow P\ge\sqrt[3]{3}\)
Dấu bằng xẩy ra khi a=b=c=3
Bài 1:
\(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)
Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)
\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)
\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
\(\Rightarrow\)(*) luôn đúng
Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)
Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)
Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)
\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)
https://olm.vn/thanhvien/ankhunge
Làm sai rồi ạ
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)tính gt bt \(a^{2018}+b^{2018}+c^{2018}\)
Cho \(\hept{\begin{cases}a,b,c>0\\abc=1\end{cases}}\). Tính \(A=\frac{a}{a+ab+1}+\frac{b}{b+bc+1}+\frac{c}{ca+c+1}\)
Cho \(\hept{\begin{cases}a,b,c\ge0\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}< 1\end{cases}}\)CMR \(abc\le\frac{1}{8}\)
Tìm a,b,c,d >0 thỏa mãn:
\(\hept{\begin{cases}a+b+c+d=4\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=4\end{cases}}\)
Ta có:
\(\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\left(a+b+c+d\right).\frac{16}{\left(a+b+c+d\right)}=16\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\)
Dấu = xảy ra khi \(a=b=c=d=1\)
cho a,b,c thỏa mãn \(\hept{\begin{cases}a+b+c=2019\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\end{cases}}\)
cm trong 3 số a,b,c luôn có 1 số bằng 2019
Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Mà \(a+b+c=2019\)
\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)
Cho \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\\\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=12\end{cases}}\)tính \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)
=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)
=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)
=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)
Khi đó Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)
= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020
= 1 + 1 + 1 = 3
Vậy P = 3