1/2×3+1/3×4+1/4×5+....+1/18×19+1/19×20
C=1/1*2*3*4+1/3*4*5+...+1/17*18*19+1/18*19*20
bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ
1/2 nhân 3 + 1/3 nhân 4 + 1/4 nhân 5 + ... + 1/18 nhân 19 + 1/19 nhân 20
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Tính
1/2+1/3+1/4+...1/19+1/20:19/1+18/2+17/3+...+2/18+1/19
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
E=1×2×3+2×3×4×3×4×5+...+18×19×20
G=2×4×6+4×6×8+6×8×10+...-18×20×22
H=1×3×5+3×5×7+5×7×9+17×19×21
\(E=1.2.3+2.3.4+3.4.5+...+18.19.20\)
\(4E=1.2.3.4+2.3.4.4+3.4.5.4+...+18.19.20.4\)
\(4E=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+18.19.20.\left(21-17\right)\)
\(4E=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+18.19.20.21-17.18.19.20\)
\(4E=18.19.20.21\)
\(4E=143640\)
\(E=\frac{143640}{4}\)
\(E=35910\)
Chúc bạn học tốt ~
\(G=2.4.6+4.6.8+6.8.10+...+18.20.22\) ( xem lại đề có nhầm dấu ko nha bn )
\(8G=2.4.6.8+4.6.8.8+6.8.10.8+...+18.20.22.8\)
\(8G=2.4.6.8+4.6.8.\left(10-2\right)+6.8.10.\left(12-4\right)+...+18.20.22\left(24-16\right)\)
\(8G=2.4.6.8+4.6.8.10-2.4.6.8+6.8.10.12-4.6.8.10+...+18.20.22.24-16.18.20.22\)
\(8G=18.20.22.24\)
\(8G=190080\)
\(G=\frac{190080}{8}\)
\(G=23760\)
Chúc bạn học tốt ~
\(H=1.3.5+3.5.7+5.7.9+...+17.19.21\)
\(8H=1.3.5.8+3.5.7.8+5.7.9.8+...+17.19.21.8\)
\(8H=1.3.5.8+3.5.7.\left(9-1\right)+5.7.9.\left(11-3\right)+...+17.19.21.\left(23-15\right)\)
\(8H=1.3.5.8+3.5.7.9-1.3.5.7+5.7.9.11-3.5.7.9+...+17.19.21.23-15.17.19.21\)
\(8H=1.3.5.8-1.3.5.7+17.19.21.23\)
\(8H=15+156009\)
\(8H=156024\)
\(H=\frac{156024}{8}\)
\(H=19503\)
Chúc bạn học tốt ~
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
Tinh:
1/19 + 2/18 + 3/17 +...+ 18/2 + 19/1
1/2 + 1/3 + 1/4 +...+ 1/19 + 1/20
\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\) = \(\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+1\)
= \(\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{20}\)
=\(20.\left(\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}+\frac{1}{20}\right)\)
=\(20.\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}\right)\)
Vì tử số gấp 20 lần mẫu số nên phân số này bằng 20
giúp mình bài này với nhé mọi người ơi
Tính nhanh
a) (1 ++ 3 + 6 + 10 + ... + 45 + 55) / (1 * 10 + 2 * 9 + 3 * 8 + ... + 8 * 3 + 9 * 2 + 10 * 1)
b) (1 * 20 + 2 * 19 + 3 * 18 + 4 * 17 + ... + 18 * 3 + 19 * 2 + 20 * 1) / [20 * (1 + 2 + 3 + 4 + .. . + 19 + 20) - (1 * 2 + 2 * 3 + 3 * 4 + ... + 19 * 20)]
CTR1/1*2*3+1/2*3*4+1/3*4*5+...+1/18*19*20<1/4
tinh : (1/19+2/18+3/17+...+18/2+19/1)/1/2+1/3+1/4+...+1/20