Cho \(\frac{a}{b}\) =\(\frac{c}{d}\)CMR \(\frac{2017a+2018b}{2017c+2018d}\)tất cả mũ 3=\(\frac{a^3-b^3}{c^3-d^3}\)
Giúp mik nhé sắp thi HK1 rùi!
Bài cúi thả like :) Cho a/b=c/d CMR a) a+b/c+d=a-b/c-d b) 2017a+2018b/2017c+2018d =2017a-2018b/2017c-2018d
Cho \(\frac{a}{b}=\frac{c}{d}\).CMR \(\frac{2017-2018b}{2018a+2019b}=\frac{2017c-2018d}{2018c+2019d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)
<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)
<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)
Bài 1 cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh
d) \(\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
e) \(\frac{2016a-2017b}{2017c+2018d}=\frac{2016c-2017d}{2017a+2018b}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức: \(M=\frac{2020a-2018b}{c+d}-\frac{2019b+2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức: \(M=\frac{2020a-2018b}{c+d}-\frac{2019b+2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
a) cho: \(\dfrac{a}{b}=\dfrac{c}{d}\)
và a, b, c, d \(\ne\) 0 ; \(2017a-2018b\ne0;2017c-2018d\ne0\)
CMR: \(\dfrac{2017a+2017b}{2017a-2017b}=\dfrac{2017c+2018d}{2017c-2018d}\)
b) cho \(a^2=bc\)
CMR: \(\dfrac{c}{b}=\dfrac{a^2+c^2}{b^2+a^2}\)
b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\)CMR \(\frac{2017a+2018}{2018a-2019b}\)= \(\frac{2017c+2018d}{2018c-2019d}\)
ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)
\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)
\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)
\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
Đề bài: ... cmr \(\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018b}{2018d}\) (*)
mà \(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2017a+2018b}{2017c+2018d}\)
\(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}\)
Từ (*) \(\Rightarrow\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019b}{2018c-2019d}\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức:
\(M=\frac{2020a-2018b}{c+d}-\frac{2019b-2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
CHo a,b,c>0 ,a+b+c=3. Tìm GTNN:
\(P=\frac{2017a^3}{1+b^2}+\frac{2017b^3}{1+c^2}+\frac{2017c^3}{1+a^2}\)
Ta có bđt \(ab^2+bc^2+ca^2\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)
\(P=2017\left(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\right)\)
Ta có: \(\frac{a^3}{1+b^2}+\frac{a\left(1+b^2\right)}{4}\ge2\sqrt{\frac{a^3}{1+b^2}.\frac{a\left(1+b^2\right)}{4}}=a^2\)
Tương tự suy ra \(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\ge\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab^2+bc^2+ca^2\right)\)
\(\ge\left(a^2+b^2+c^2\right)-\frac{3}{4}-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{3}{4}\ge\frac{3}{4}.3-\frac{3}{4}=\frac{3}{2}\)