Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Long
Xem chi tiết
Galaxy
12 tháng 3 2018 lúc 20:26

hình như cái này đâu phải toán lớp 5 đâu bạn

Nguyễn Việt Long
12 tháng 3 2018 lúc 20:29

nhầm toán lớp 6

Trương Thị Viên
13 tháng 3 2020 lúc 15:47

12+13×14

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết
tuan tran
Xem chi tiết
Học Sinh Ham Chơi
4 tháng 3 2018 lúc 20:25

Ta có :

a^2>hoặc=0(vì mang số mũ dương)

Tương tự => b^2 và c ^2 như a^2

mà a^2+b^2+c^2=1=>a=b=c=1

=> a^2016+b^2017+c^2018=1

zZz Cool Kid_new zZz
23 tháng 7 2020 lúc 22:40

Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)

\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)

Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)

\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)

Cứ tiếp tục thì sẽ ra nhá :))

Khách vãng lai đã xóa
Công chúa thủy tề
Xem chi tiết
Hoàng Ninh
6 tháng 7 2018 lúc 12:48

Có \(a+b+c=0;\overline{ab}+\overline{bc}+\overline{ca}=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Mà \(a^2;b^2;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu "=" xảy ra khi a;b;c = 0

Thay vào biểu thức ta có:

\(\left(0-1\right)^{2016}+\left(0-1\right)^{2017}+\left(0-1\right)^{2018}\)

\(=\left(-1\right)^{2016}+\left(-1\right)^{2017}+\left(-1\right)^{2018}\)

\(=1+\left(-1\right)+1\)

\(=1\)

ST
6 tháng 7 2018 lúc 9:51

a+b+c=0

<=>(a+b+c)2=0

<=>a2+b2+c2+2(ab+bc+ca)=0

<=>a2+b2+c2=0

Vì \(a^2\ge0,b^2\ge0,c^2\ge0\)

=>\(a^2+b^2+c^2\ge0\)

Dấu "=" xảy ra khi a=b=c=0

từ đây thay vào

Nguyễn Thanh Hà
Xem chi tiết
fairy
1 tháng 7 2017 lúc 22:46

a2+b2+c2=ab+bc+ca

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a=b=c

mà a+b+c=3<=>a=b=c=1

=>P=0

trần gia bảo
20 tháng 9 2018 lúc 21:02

P=2017 chứ bạn

Phạm Thu Hương
Xem chi tiết
Nguyễn Linh Chi
7 tháng 10 2019 lúc 12:35

Em tham khảo cách làm tại link: Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath

Trương Quân Bảo
Xem chi tiết
Bảo Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 9 2020 lúc 17:43

Ta có: \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

mà a+b+c=6

nên \(a=b=c=\frac{6}{3}=2\)

Vậy: \(A=\left(1-a\right)^{2017}+\left(b-1\right)^{2017}+\left(c-2\right)^{2017}\)

\(=\left(1-2\right)^{2017}+\left(2-1\right)^{2017}+\left(2-2\right)^{2017}\)

\(=-1^{2017}+1^{2017}=0\)

nguyen phu trong
Xem chi tiết