tìm hằng số a sao cho
2x^2b +ax+1 chia cho x-3 dư 4
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
tìm các hằng số a,b sao cho x3 +ax+b chia cho x+1 dư 7; chia cho x-2 dư 4
Lời giải:
Áp dụng định lý Bezout về phép chia đa thức, số dư của $f(x)=x^3+ax+b$ chia $x+1$ và $x-2$ lần lượt là $f(-1)$ và $f(2)$.
Ta có:
$f(-1)=(-1)^3+a(-1)+b=7$
$\Rightarrow -a+b=8(1)$
$f(2)=2^3+2a+b=8+2a+b=4$
$\Rightarrow 2a+b=-4(2)$
Lấy $(1) - (2)\Rightarrow -3a=12\Rightarrow a=-4$
$b=8+a=8+(-4)=4$
Vậy........
a)Xác định hằng số a sao cho:
2x2+ax+1 chia x-3 dư 4
b) Tìm các số a,b sao cho \(x^3+ax+b\) chia cho x+1 dư 7 chia cho x-3 dư 5
c) Tìm các số a,b sao cho \(ax^3+bx^2+c\) chia hết cho x+2 chia cho x2-1 thì dư x+5
tìm các hằng số a và b sao cho \(x^3+ax+b\)chia cho x+1 dư 7; chia cho x-2 dư 4
Gọi thương của phép chia \(x^3+ax+b\) cho \(x+1\)là \(A\left(x\right)\); cho \(x-2\)là \(B\left(x\right)\)
Ta có: \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)
\(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)
Theo định lý Bơ-du ta có:
\(f\left(-1\right)=-1-a+b=7\)
\(f\left(2\right)=8+2a+b=4\)
suy ra: \(a=-4;\) \(b=4\)
Vậy...
Bài 1 Xác định hằng số a sao cho
a) (10x2-7x+a) chia hết (2x-3)
b) (2x2+ax+1) chia cho x-3 dư 4
c)(ax5+5x4-9)chia hết (x-1)
Tìm các hằng số a, b sao cho ax3+ax+b chia cho x+1 dư 7 và chia cho x-3 dư -5
Tìm các hằng số a và b sao cho x3 + ax + b chia cho x + 1 dư 7, chia cho x - 3 dư - 5.
Tìm các hằng số a và b sao cho x3+ax+b chia hết x+1 dư 7, chia cho x-3 dư -5
Xác định hằng số a sao cho :
a, 2x2 + ax + 1 chia cho x-3 dư 4
b,ax5 + 5x4 - 9 chia hết cho x-1
c, x3 + ax2 - 4 chia hết cho x2 + 4x+4
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số