CMR:
a) Nếu x-y=0 thì xy lớn hơn hoặc bằng 0
b) Nếu x-y+z=0 thì xy+yz-zx > hoặc =0
chứng minh rằng nếu x-y+z=0 thì xy+yz-zx lớn hơn hoặc bằng 0
Lời giải:
Khi $x-y+z=0\Rightarrow y=x+z$. Thay vào biểu thức $xy+yz-xz$ thì:
$xy+yz-xz=x(x+z)+(x+z)z-xz=x^2+xz+z^2=x^2+\frac{xz}{2}+\frac{xz}{2}+\frac{z^2}{4}+\frac{3}{4}z^2$
$=(x+\frac{z}{2})^2+\frac{3}{4}z^2$
Dễ thấy $(x+\frac{z}{2})^2\geq 0; \frac{3}{4}z^2\geq 0$ với mọi $x,y,z$ nên $xy+yz-xz\geq 0$
Ta có đpcm.
CMR: nếu x-y+z=0 thì xy+yz-zx > hoặc = 0
x,y,z lớn hơn hoặc bằng 0 x+y+z+xyz=4
Max P=xy+yz+zx
Giả sử z = min{x,y,z} \(\Rightarrow4=x+y+z+xyz\ge z^3+3z\Leftrightarrow\left(z-1\right)\left(z^2+z+4\right)\le0\Rightarrow z\le1\)(*)
Chọn t thỏa mãn \(\hept{\begin{cases}x+y+z+xyz=2t+z+t^2z\\2t+z+t^2z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-2t=\left(t^2-xy\right)z\left(1\right)\\2t+z+t^2z=4\left(2\right)\end{cases}}\)
Giả sử \(t^2< xy\Rightarrow2t>x+y\ge2\sqrt{xy}\Rightarrow t^2>xy\) (mâu thuẫn với giả sử)
Vậy \(t^2\ge xy\Rightarrow x+y\ge2t\). Đặt P = f(a;b;c). Xét hiệu:
\(f\left(x;y;z\right)-f\left(t;t;z\right)=z\left(x+y-2t\right)-\left(t^2-xy\right)\)
\(=z^2\left(t^2-xy\right)-\left(t^2-xy\right)=\left(z^2-1\right)\left(t^2-xy\right)\le0\)
Vậy: \(P=f\left(x;y;z\right)\le f\left(t;t;z\right)=t^2+2tz\)
Từ \(\left(2\right)\Rightarrow z=\frac{\left(4-2t\right)}{t^2+1}.\text{Do }z\ge0\Rightarrow4-2t\ge0\Rightarrow t\le2\)
Mặc khác do (*): \(\Rightarrow4=2t+z+t^2z\le t^2+2t+1\Rightarrow\left(t+3\right)\left(t-1\right)\ge0\Rightarrow2\ge t\ge1\)
Vậy ta tìm max của: \(f\left(t;t;z\right)=f\left(t;t;\frac{4-2t}{t^2+1}\right)=t^2+\frac{2t\left(4-2t\right)}{t^2+1}\)
Dễ thấy hàm số này đồng biến suy ra \(f\left(t;t;\frac{4-2t}{t^2+1}\right)\) đạt max khi t = 2. Khi đó \(P=f\left(a;b;c\right)\le f\left(t;t;\frac{4-2t}{t^2+1}\right)\le4\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;2;0\right)\) và các hoán vị.
P/s: em hết cách rồi nên đành chơi kiểu này:(
tìm số tự nhiên 0 bé hơn x bé hơn hoặc bằng y bé hơn hoặc bằng z và xy+yz+zx=xyz
x,y,z lớn hơn hoặc bằng 0 \(x^3+y^3+z^3=3\)
Max A= 3(xy+yz+zx)-xyz
235. Chứng minh rằng
a) Nếu x-y=0 thì \(xy\ge0\)
b) Nếu x-y+z=0 thì \(xy+yz-zx\ge0\)
Ta có : x - y = 0 => x = y
Vì x = y => xy = x2 = y2 ≥ 0
=> xy ≥ 0 ( đpcm )
CMR: a) Nếu x - y = 0 thì \(xy\ge0\)
b) Nếu x - y + z = 0 thì \(xy+yz-zx\ge0\)
a/ Ta có \(x-y=0\)
\(\Rightarrow\left(x-y\right)^2=0\Leftrightarrow x^2-2xy+y^2=0\)
\(\Rightarrow x^2+y^2-2xy=0\Leftrightarrow x^2+y^2=2xy\)
Ta có \(x^2\ge0\) và \(y^2\ge0\)
\(\Rightarrow x^2+y^2\ge0\)
\(\Rightarrow2xy\ge0\)
b/ Ta có: \(x-y+z=0\)
\(\Rightarrow\left(x-y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=0\)
\(\Rightarrow x^2+y^2+z^2=2\left(xy-xz+yz\right)\)
Vì \(x^2\ge0\)và \(y^2\ge0\)và \(z^2\ge0\)nên \(x^2+y^2+z^2\ge0\)
\(\Rightarrow2\left(xy-xz+yz\right)\ge0\Leftrightarrow xy-xz+yz\ge0\)
a, \(x-y=0\Rightarrow x=y\)
Vì x,y cùng dấu nên \(xy\ge0\)
Hok tốt
Cho x,y,z lớn hơn hoặc =0.cmr (x+y)(y+z)(z+x)lớn hơn hoặc bằng 8/9(x+y+z)(xy+yz+xz)
Cho x,y,z >0 thỏa x^2+y^2+z^2 bé hơn hoặc bằng 3. Tìm GTNN:
P= 1/1+xy + 1/1+yz + 1/1+zx