phân tích các đa thức sau thành nhân tử
a) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
Phân tích các đa thức thành nhân tử
a)x^3-4x^2+8x-8
b)a^2+b^2-a^2b^2+ab-a-b
c)x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz
Phân tích đa thức thành nhân tử
a) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
Hóng cao nhân , CTV vô đê , tận 30 người cơ mà
a) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)
\(=\left(x+y+z\right)\left(xy+xz\right)+yz\left(y+z\right)\)
\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z+x\right)\)
\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)
P/s: Sai sót xin bỏ qua.
x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz
phân tích đa thức thành nhân tử nha mọi người . Giúp mik nha cảm ơn trước
phân tích đa thức sau thành nhân tử
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)
nick ko hay rồi tcn còn ko hay nữa
Phân tích đa thức thành nhân tử :
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2.\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
c) \(x^2y+xy^2+xz^2+yz^2+x^2z+y^2z+2xyz\)
phân tích đa thức thành nhân tử
1)bc(b+c)+ca(c-a)-ab(a+b)
2)\(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc\)
3)y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2
4)\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
Phân tích đa thức thành nhân tử
x^2y + y^2z + z^2x +xy^2 +yz^2 +xz^2 +2xy^2
\(x^2y+xy^2+x^2z+y^2z+2xyz\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ(NHÓM HẠNG TỬ)
=xy ( x + y ) + z ( x^2 + 2xy + y^2 ) = xy ( x + y ) + z ( x + y ) ^ 2 = ( x + y ) ( xy + xz + yz )