tính nhanh:
1/2 + 1/4 + 1/8 ... + 1/64 + 1/128
tính nhanh: 1/2 + 1/4 + 1/8 +.........+1/64 + 1/128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128
ta rút gọn thành : 1 - 1/128
= 127/128
Đặt biểu thức đó là A
=> 2A = 1 + 1/2 + 1/4 + ... + 1/32 + 1/64
=> 2A - A = A = 1 - 1/128 = 127/128
tk nha dinh tran uyen
Bằng 7/128 hay sao ấy
Mình không chắc nữa,nhưng nếu đúng thì k cho mình nha
1,tính nhanh:1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)
Tính nhanh : 1+1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512
Tính nhanh :
1/2+1/4+1/8+1/16+1/32+1/64+1/128
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(A\cdot2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\) \(-\) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(A=\) \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}\)
\(A=1-\frac{1}{128}\)
\(A=\frac{127}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
Ta lấy\(\frac{1}{128}\)là MSC. Ta tính được \(\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)
Kết quả bằng \(\frac{127}{128}\)
Tính nhanh
1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128
1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128
=1-1/2+1/2-1/4+1/4-1/8+...+1/64+1/128
=1-1/128
=127/128
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
Tính nhanh:
1/2+1/4+1/8+1/16+1/32+1/64+1/128
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
A=\(\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)=\frac{1}{2}\left(1+A-\frac{1}{2}-\frac{1}{128}\right)\)
2A=\(A+\frac{1}{2}-\frac{1}{128}=A+\frac{63}{128}\)
=> A=\(\frac{63}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)\(+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.3}\)\(+\frac{1}{2.4}+\frac{1}{2.8}+\frac{1}{4.8}+\frac{1}{8.8}+\frac{1}{8.16}\)
\(=\frac{1}{1}-\frac{1}{16}=\frac{16}{16}-\frac{1}{16}=\frac{15}{16}\)
tính nhanh: 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+.........+\frac{1}{64}-\frac{1}{128}=\frac{1}{1}-\frac{1}{128}=\frac{127}{128}\)
Vào đây: http://olm.vn/hoi-dap/question/152700.html
Và đừng quên tick đúng đấy
Tính nhanh
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
Tính nhanh:
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 – 1/2 + 1/2- 1/4 + 1/4 – 1/8 + 1/8 – 1/16 + 1/16 – 1/32 + 1/32 – 1/64 + 1/64 – 1/128 + 1/128 – 1/256 – 1/256 – 1/512
= 1 – 1/512
= 511/512 .
Câu hỏi của Speed of light - Toán lớp 4 - Học toán với OnlineMath
Em tham khảo bài đc OLM k đúng nhé!
Cảm ơn các bạn