Những câu hỏi liên quan
Hà Thị Thanh Xuân
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 10:23

1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)

\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)

2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)

Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được : 

\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)

Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0

=> A = 1

Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1

Lê Minh
Xem chi tiết
Thân Nhật Minh
Xem chi tiết
TuanMinhAms
7 tháng 11 2018 lúc 20:43

thay z = -(x+y) , y = -(z+x),... vao

=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0

Huy Hoàng Phạm (Ken)
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 0:59

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

Nguyễn Khắc Quang
Xem chi tiết
Greninja
8 tháng 2 2021 lúc 15:33

Ta có : \(x^2+2y+1=0;y^2+2z+1=0;z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1=y^2+2z+1=z^2+2x+1\)

\(\Rightarrow x^2+2y+1-y^2-2z-1-z^2-2x-1=0\)

\(\Rightarrow\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x-1\right)^2-\left(y-1\right)^2-\left(z+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-1=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)

Thay \(x=1;y=1;z=-1\)vào A ta có :

\(A=1^{2015}+1^{2016}+\left(-1\right)^{2017}=1+1-1=1\)

Vậy A = 1

 

Khách vãng lai đã xóa

Từ \(\hept{\begin{cases}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{cases}}\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{cases}\left(2\right)}\)

Từ \(\left(1\right)\)và \(\left(2\right)\):

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\)

\(\Rightarrow x=y=z=-1\)

\(\Rightarrow A=\left(-1\right)^{2015}+\left(-1\right)^{2016}+\left(-1\right)^{2017}=-1+1-1=-1\)

Vậy \(A=-1\)

Khách vãng lai đã xóa
Ngô Chi Lan
8 tháng 2 2021 lúc 15:57

Ta có\(\hept{\begin{cases}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{cases}}\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0\)

\(\Leftrightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

Ta thấy \(\hept{\begin{cases}\left(x+1\right)^2\\\left(y+1\right)^2\\\left(z+1\right)^2\end{cases}\ge0\forall x,y,z}\)

Dấu"=" xảy ra khi \(\left(x+1\right)^2=\left(y+1\right)^2=\left(z+1\right)^2=0\)

\(\Rightarrow x=y=z=-1\)

Vậy giá trị của biểu thức A là:

\(A=\left(-1\right)^{2015}+\left(-1\right)^{2016}+\left(-1\right)^{2017}=-1\)

Vậy A=-1

Khách vãng lai đã xóa
Trịnh Hoàng Đông Giang
Xem chi tiết
Phước Nguyễn
9 tháng 4 2016 lúc 10:49

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

Nguyền Thừa Huyền
9 tháng 4 2016 lúc 9:42

1a) x=1, y=1/2, z=0

Phước Nguyễn
9 tháng 4 2016 lúc 11:06

Ta có:

\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\)  (do  \(x+y=xy\))  \(\left(5\right)\)

Dễ dàng chứng minh được với mọi  \(x,y\in R\), ta luôn có:

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(\text{*}\right)\)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(1^2+1^2\right)\)  và  \(\left(x^2+y^2\right)\), ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)

Do đó,  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay  \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(đpcm\right)\)

Vậy, bất đẳng thức \(\left(\text{*}\right)\)  hiển nhiên đúng với mọi  \(x,y\in R\), tức bđt  \(\left(\text{*}\right)\)  được chứng minh.

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{1}{x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y\)  

Khi đó,  từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\)  (do  hai vế của bđt  \(\left(\text{*}\right)\)  cùng dấu  \(\left(+\right)\))

nên  \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\)  (vì  \(x^2+y^2>0\)  với mọi  \(x,y\in R\) và  \(x,y\ne0\))  \(\left(6\right)\)

\(\left(5\right);\)  \(\left(6\right)\)  \(\Rightarrow\)  \(A\ge\frac{1}{2}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x+y=xy}_{x=y}\)  \(\Leftrightarrow\)  \(x=y=2\)

Vậy,  GTNN của  \(A=\frac{1}{2}\)

bui thai hoc
Xem chi tiết
HD Film
3 tháng 10 2019 lúc 23:00

\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge2+2+2=6\)(BDT cô-si)

Dấu '=' xảy ra khi x=y=z=1 rồi thay vào tính dc P=3

Nguyễn Linh Chi
3 tháng 10 2019 lúc 23:05

\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\\z=\pm1\end{cases}}\)

=> \(P=x^{28}+y^{10}+z^{2017}=1+1+z^{2017}=2+z^{2017}\)

Với \(z=-1\Rightarrow P=1+1-1=1\)

Với \(z=1\Rightarrow P=1+1+1=3\)

Phạm Tường Lan Vy
Xem chi tiết
Nguyễn Quang Linh
Xem chi tiết
Nguyễn Quang Linh
11 tháng 11 2019 lúc 11:28

ai đúng mình tk cho

mình cần chiều nay rồi

Khách vãng lai đã xóa