tìm n thuộc z để 2n^2+5n-1 chia hết cho 2n-1
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Tìm n thuộc z để 2n^2+5n-1 chia hết cho 2n-1
Tìm n thuộc Z để
2n^2 + 5n - 1 chia hết cho 2n-1
\(2n^2+5n-1=2n^2-n+6n-3+2\)
\(=n\left(2n-1\right)+3\left(2n-1\right)+2\)
Để \(2n^2+5n-1⋮2n-1\)thì \(2⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 2n - 1 là số lẻ nên:
\(2n-1\in\left\{-1;1\right\}\Rightarrow n\in\left\{0;1\right\}\)
Chúc bạn học tốt.
\(2n^2+5n-1\)chia hết cho \(2n-1\)
\(\Leftrightarrow2\)chia hết cho \(2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-1;0;2;3\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{1}{2};0;1;\frac{3}{2}\right\}\)
Mà \(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Tìm n thuộc Z để 2n^3-n^2+5n+6 chia hết cho 2n+1
2n3-n2+5n+6
=n2(2n+1)-2n2+5n+6
=n2(2n+1)-n(2n+1)+6n+6
=> 6n+6 chia hết 2n+1
3(2n+1)+3 chia hết 2n+1
=> 3 chia hết 2n+1
=> 2n+1 thuộc Ư(3)=1 ; 3 ; -1 ; -3
2n = 0 ; 2 ; -2 ; -4
n = 0 ; 1 ; -1 ; -2
kb vs mik nha
Tìm n thuộc z để (2n2+5n-1) chia hết cho (2n-1)
Tìm "n" thuộc tập "Z" để đa thức 2n^2 + 5n - 1 chia hết cho 2n - 1
Tìm n thuộc Z để 2n2 + 5n -1 chia hết cho 2n - 1
tìm n thuộc z : 2n^2 + 5n - chia hết cho 2n - 1
Tìm n Thuộc Z để\(2n^2+5n-1\) chia hết cho \(2n-1\)
Ta có:
\(2n^2+5n-1⋮2n-1\)
\(\Rightarrow n\left(2n-1\right)+3\left(2n-1\right)+2⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
Do \(n\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Rightarrow2n\in\left\{0;2;-1;3\right\}\)
Mà \(n\in Z\Rightarrow n\in\left\{0;1\right\}\)