so sánh hai số bằng cách vận dụng hằng đẳng thức
A = 4(32+1) (34+1).....(364+1) và B = 3128 -1
so sánh hai số sau bằng cách vận dụng hằng đẳng thức
A = 4(32 + 1)(34 + 1)....(364 + 1) và B = 3128 - 1
giúp mình lời giải chi tiết được không ạ, cảm ơn m.n
`A=4(3^2+1)(3^4+1)...(3^64+1)`
`=>2A=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)`
- Ta có:
`(3^2-1)(3^2+1)=3^4-1`
`(3^4-1)(3^4+1)=3^16-1`
`....`
`(3^64-1)(3^64+1)=3^128-1`
Suy ra `2A=3^128-1=B`
`=>A<B`
so sánh hai số bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1)...(364+1) và B=3128-1
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức :
a) A = 1999.2001 và B = 20002
b) A = 216 và B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)
c) A = 2011.2013 và B = 20122
d) A = 4(32 + 1)(34 + 1)....(364 + 1) và B = 3128 - 1
So sánh hai số bằng cách vận dụng hằng đẳng thức :
\(A=4.\left(3^2+1\right).\left(3^4+1\right)....\left(3^{64}+1\right)\) và
\(B=3^{128}-1\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)= ... =4.(3128-1)
<=>8A=4B <=>2A=B =>B>A
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1).....(364+1) vs B=3128-1
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)
\(\Rightarrow\)\(A< B\)
Tại sao 4 lại trở thành 2 vậy. Giải thích giúp mình nhé.
Giúp mình vs ạ mai mình học rùi
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức :
a) A = 1999.2001 và B = 20002
b) A = 2^16 và B = (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)
c) A = 2011.2013 và B = 2012^2
d) A = 4(3^2 + 1)(3^4 + 1)....(3^64 + 1) và B = 3^128 - 1
So sánh hai số bằng cách vận dụng hằng đẳng thức:a) A = 1999.2001 và B = 20002 b) A = 216 và B (2 +1)(22 +1)(24 +1)(28 +1) c) A = 2011.2013 và B = 20122 d) A = 4(32 +1)(34 +1)...(364 +1) và B = 3128 1
So sánh 2 số bằng cách vận dụng hàng đẳng thức
a)A=2^16 và B=( 2+1)(2^2+1)(2^4+1)(2^8+1)
b)A=4(3^2+1)(3^4+1)...(3^64+1)và B=3^128 -1
so sánh hai số bằng cách vận dụng hằng đẳng thức
a) A=\(2^{16}\) và B=\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
b) A=\(4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\) và B=\(3^{218}-1\)
\(a.\)
Ta sẽ biến đổi biểu thức \(B\) quy về dạng có thể dùng được hằng đẳng thức \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
Vì \(2^{16}>2^{26}-1\) nên \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
Vậy, \(A>B\)
Tương tự với câu \(b\) kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)
Mặt khác, do \(\frac{1}{2}<1\) nên \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)
Vậy, \(B>A\)