giá trị nhỏ nhất và giá trị lớn nhất của hám số y= sinx+cos/2sinx-cox +3 lần lượt là:
Giá trị nhỏ nhất và lớn nhất của hàm số y = 2 sin x + cos x + 3 - sin x + 2 cos + 4 lần lượt là:
A. 1/2 và 1
B. 1/2 và 2
C. 2/11 và 1
D. 2/11 và 2
Xét − sin x + 2 cos x + 4 = 0
Ta thấy − 1 2 + 2 2 < 4 2 nên phương trình vô nghiệm.
Do đó − sin x + 2 cos x + 4 ≠ 0 .
Như vậy, y = 2 sin x + cos x + 3 − sin x + 2 cos x + 4
⇔ y − sin x + 2 cos x + 4 = 2 sin x + cos x + 3
⇔ sin x 2 + y + cos x 1 − 2 y + 3 − 4 y = 0
Để phương trình có nghiệm thì 2 + y 2 + 1 − 2 y 2 ≥ 3 − 4 y 2
⇔ 5 y 2 + 5 ≥ 16 y 2 − 24 y + 9
⇔ 11 y 2 − 24 y + 4 ≤ 0
⇔ 2 11 ≤ y ≤ 2
Chọn đáp án D.
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = cos x + 2 sin x + 3 2 cos x − sin x + 4 . Tính M,m.
A. 4 11 .
B. 3 4
C. 1 2
D. 20 11 .
Đáp án A
Ta có: y = cos x + 2 sin x + 3 2 cos x − sin x + 4
⇒ y 2 cos x − sin x + 4 = cos x + 2 sin x + 3
⇔ 2 + y sin x + 1 − 2 y cos x = 4 y − 3 1
PT (1) có nghiệm ⇔ 2 + y 2 + 1 − 2 y 2 ≥ 4 y − 3 2
⇔ 11 y 2 − 24 y + 4 ≤ 0 ⇔ 2 11 ≤ y ≤ 2
Suy ra M = 2 m = 2 11 ⇒ M . m = 4 11
Giá trị nhỏ nhất và lớn nhất của hàm số y = 2 sin x + cos x + 1 sin x - cos 2 x + 3 lần lượt là:
A. – 1/2 và 2
B. 1/2 và 2
C. -2 và -1/2
D. -2 và 1/2
Chọn A
↔ (2-y)sinx + (1+2y)cosx= 3y-1(*)
Sử dụng điều kiện để phương trình (*) có nghiệm suy ra -1/2 ≤ y ≤ 2
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=2sinx + cosx +1. Tổng M2+ m2 có giá trị là
A. 18
B. 36
C. 12
D. 30
Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = sin x + cos x 2 sin x - cos x + 3 lần lượt là:
A. m = - 1 ; M = 1 2
B. m = -1; M = 2
C. m = - 1 2 ; M = 1
D. m = 1; M = 2
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2 sin x trên đoạn − π 6 ; 5 π 6 . Tính M, m.
A. M = 1 , m = − 1.
B. M = 2 , m = − 2.
C. M = 1 , m = − 2.
D. M = 2 , m = − 1.
Đáp án D.
Ta có y ' = c osx ⇒ y'=0 ⇔ c osx=0 ⇔ x= π 2 + k π k ∈ ℤ ⇒ x 0 = π 2 ∈ − π 6 ; 5 π 6 .
Suy ra y − π 6 = − 1 , y π 2 = 2 , y 5 π 6 = 1 ⇒ M = 2 m = − 1 .
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = sinx trên đoạn - π 2 ; - π 3 lần lượt là
A. - 1 2 ; - 3 2
B. - 3 2 ; - 1
C. - 3 2 ; - 2
D. - 2 2 ; - 3 2
Đáp án B
Ta có: y' = cosx trên đoạn - π 2 ; - π 3 hàm số y = sinx đồng biến.
Lại có sin - π 2 = - 1 ; sin - π 3 = - 3 2 vậy giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = sinx trên đoạn - π 2 ; - π 3 lần lượt là - 3 2 ; - 1 .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = sin x + cos x - 1 sin x - cos x + 3 khi đó:
A.
B.
C.
D.
Đáp án B
Vì nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình có nghiệm.
Sử dụng điều kiện có nghiệm của phương trình suy ra được vậy m = -1 và
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = sin x + cos x - 1 sin x - cos x + 3 khi đó:
A. M = - 1 ; m = 1
B. M = 1 7 ; m = - 1
C. M = - 1 7 ; m = 1 7
D. M = - 1 ; m = - 1 7
Chọn B
Vì sinx-cosx+3>0 nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình (1-y)sinx+(y+1)cosx=(1+3y) có nghiệm.
Sử dụng điều kiện có nghiệm của phương trình A.sinx+B.cosx=C. Vậy m = -1 và M=1/7