Tìm số tự nhiên x, biết : 1/3+1/6+1/10+....+2/x.(x+1) = 2005/2006
tìm x biết
1/3 + 1/6 + 1/10 + ......+ 2/x.(x+1)= 2005/2007 ( với x là số tự nhiên khác 0 )
helps me
1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2005/2007
=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2005/2007
=> 2(1/2*3 + 1/3*4 + 1/4*5 + ... + 1/x*(x+1) = 2005/2007
=> 2(1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1) = 2005/2007
=> 2(1/2 - 1/x + 1) = 2005/2007
=> 1/2 - 1/x + 1 = 2005/4014
=> 1/x+1 = 1/2007
=> x + 1 = 2007
=> x = 2006
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2005}{2007}\)
\(\rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2005}{2007}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2005}{2007}:2\)
\(\rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2005}{2007}:2\) \(\Rightarrow\frac{1}{x+1}=\frac{1}{2007}\)
\(\Rightarrow x+1=2007\rightarrow x=2006\)
Vậy x = 2006.
Tìm số tự nhiên x biết \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4008}{2005}\)
\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4008}{2005}\)
\(=>2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
\(2.\left(1-\frac{1}{x+1}\right)=\frac{4008}{2005}\)
=> \(1-\frac{1}{x+1}=\frac{4008}{2005}:2=\frac{2004}{2005}\)
\(\frac{1}{x+1}=1-\frac{2004}{2005}=\frac{1}{2005}\)
=>x+1=2005
=>x=2004
1/3 + 1/6 + 1/10 +...+ 2/x(x+1) = 2014/2015
Đ/A là 2004
chúc đồng chí Chế Minh Hải học tốt
tìm số tự nhiên x
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.............+\frac{2.x}{x.\left(x+1\right)}=\frac{2005}{2017}\)
mình cần gấp
tim stn x biet 1/3 + 1/6 + 1/10 +...+2/x x (x - 1) = 2005/2006
tìm số tự nhiên x biết 1/3+1/6+1/10+...+2/x.(x+1)=2020/2022
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)
=>1/x+1=-1009/2022
=>x+1=-2022/1009
hay x=-3031/1009
tìm số tự nhiên x biết:
1/3+1/6-1/10+...+1/x(x+1):2=2001/2003
Ta có:
1/3 + 1/6 + 1/10 + ... + 1/x(x+1):2 = 2001/2003
=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2001/2003
=> 2 [1/6 + 1/12 + 1/20 + ... + 1/x(x+1)] = 2001/2003
=> 2 [1/2x3 + 1/3x4 + 1/4x5 + ... + 1/x+(x+1)] = 2001/2003
=> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1= 2001/2003 : 2
=> 1/2 - 1/x+1 = 2001/4006
=> 1/x+1 = 1/2 - 2001/4006 = 1/2003
=> x+1 = 2003 = 2002 + 1
=>x = 2002
tìm số tự nhiên x biết : 1/3+1/6+1/10+...+2/ x(x+1)=2013/2015
tìm số tự nhiên x biết : 1/3 + 1/6 +1/10 + .....+2/x(x+1) =2013/2015
=>2/6+2/12+2/20+...+2/x(x+1)=2013/2015
=>2(1/2.3+1/3.4+1/4.5+...+1/x(x+1)=2013/2015
=>2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
=>(1/2-1/x+1)=2013/2015:2
=>-(1/x+1)=2013/4030-1/2
=>-(1/x+1)=-(1/2015)=>x+1=2015=>x=2014
Tìm số tự nhiên x biết:1/3+1/6-1/10+.....+1/x(x+1):2=2001/2003