Tính nhanh:
S = 1/2x4 + 1/6x8 + 1/8x10 +...+ 1/98x100
tính:1/2x4+1/4x6+1/6x8+.....+1/96x98+1/98x100=.......
1/2.4 + 1/4.6 + 1/6.8 + ... + 1/96.98 + 1/98.100
= 1/2.(2/2.4 + 2/4.6 + 2/6.8 + ... + 2/96.98 + 2/98.100)
= 1/2.(1/2 - 1/4 + 1/4 - 1/6 + ... + 1/96 - 1/98 + 1/98 - 1/100)
= 1/2.(1/2 - 1/100)
= 1/2.49/100
= 49/200
Tính
1/2x4+1/4x6+1/6x8+...+1/96x98+1/98x100=?
Tính 1/(2x4) + 1/(4x6) + 1/(6x8) + ... + 1/(96x98) + 1/(98x100)
Gọi biểu thức trên là A, ta có:
A=1/(2x4) + 1/(4x6) + 1/(6x8) + ... + 1/(96x98) + 1/(98x100)
2A=2/(2x4) + 2/(4x6) + 2/(6x8) + ... + 2/(96x98) + 2/(98x100)
2A=1/2-1/4+1/4-1/6+1/6-1/8+...+1/96-1/98+1/98-1/100
giản ước đi, ta có:
2A=1/2-1/4+1/4-1/6+1/6-1/8+...+1/96-1/98+1/98-1/100
2A=1/2-1/100
2A=49/100
=>A=49/100:2
=>A=49/200
Bài này tớ học rồi, chắn chắn đúng.
1/2x4+1/4x6+1/6x8+...+1/98x100
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Ta có:
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{98.100}\)
\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{98.100}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)
Vậy giá trị của biểu thức là \(\frac{49}{200}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
= \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
= \(\frac{1}{2}-\frac{1}{100}\)
= \(\frac{49}{100}\)
Ps: Tham khảo: [Toán nâng cao 5] - Tính nhanh phân số - tth - YouTube
1/2x4+1/4x6+1/6x8+...+1/96x98+1/98x100=?
\(\frac{1}{2x4}\)+ \(\frac{1}{4x6}\)+ ... + \(\frac{1}{98x100}\)= \(\frac{1}{2}\)x(\(\frac{4-2}{2x4}\)+\(\frac{6-4}{4x6}\)+ ... + \(\frac{100-98}{98x100}\))
= \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{8}\)+ ... + \(\frac{1}{98}\)-\(\frac{1}{100}\))
= \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{100}\)) = \(\frac{49}{200}\)
1/2x4+1/4x6+1/6x8+...+1/96x98+1/98x100
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{96.98}+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
(1/2x4+1/4x6+1/6x8+1/8x10)xy=1/3
Kết quả của phép tính : 1/2x4 + 1/4x6 + 1/6x8 + ......... + 1/96x98 + 1/98x100 là bao nhiêu ?
đặt A=1/2x4 + 1/4x6 + 1/6x8 + ......... + 1/96x98 + 1/98x100
\(\Rightarrow A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{98}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A=\frac{50}{100}-\frac{1}{100}\)
\(\Rightarrow A=\frac{49}{100}\)
Tính nhanh E= 2x4+4x6+6x8+...+98x100
\(E=2\times4+4\times6+6\times8+...+98\times100\)
\(6\times E=2\times4\times6+4\times6\times\left(8-2\right)+6\times8\times\left(10-4\right)+...+98\times100\times\left(102-96\right)\)
\(=2\times4\times6+4\times6\times8-2\times4\times6+...+98\times100\times102-96\times98\times100\)
\(=98\times100\times102\)
\(\Rightarrow E=\frac{98\times100\times102}{6}=166600\)