Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanhbg8
Xem chi tiết
Phan Tuấn Cảnh
Xem chi tiết
Lê Quang Phúc
21 tháng 6 2015 lúc 7:07

2014/x + 2015/y + 2016/z > 2014+2015+2016/x+y+z

Yuan Bing Yan _ Viên Băn...
21 tháng 6 2015 lúc 7:28

bạn ko nên trả lời quá nhiều cùng 1 câu hỏi mà kết quả trả lời giống nhau.

Phan Đức Anh
Xem chi tiết
ssjs9
Xem chi tiết
phanthaonon
10 tháng 8 2016 lúc 22:14

Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)

=>\(2016x+2016y=2014x-2014y\)

=> \(2x=-4030y\)

=>\(x=-2015y\)

\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được

\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(-y=-y^2\)

=>\(y-y^2=0\)

   \(y\).(\(1-y\))\(=0\)

\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

TH1 :\(y=0=>x.y=-2015.0=0\)

TH2 :\(y=1=>x.y=-2015.1=-2015\)

Người vô danh
4 tháng 12 2017 lúc 21:21

x=0 y=0

x=-2015 y=1

Doraemon
20 tháng 10 2018 lúc 16:15

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)

Phan Duy Tăng
Xem chi tiết
Đạt Phạm
Xem chi tiết
Vương Thái Bình
Xem chi tiết
nguyen nguyet anh
Xem chi tiết
Đặng Ngọc Quỳnh
4 tháng 10 2020 lúc 10:25

Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành: 

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)

\(\Rightarrow x=2018;y=2019;z=2020\)

Khách vãng lai đã xóa
The Angry
4 tháng 10 2020 lúc 10:25

\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)

\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)

\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)

\(x=2018,y=2019,z=2020\)

Khách vãng lai đã xóa
Khánh Ngọc
4 tháng 10 2020 lúc 10:36

ĐK : \(\hept{\begin{cases}x>2014\\y>2015\\z>2016\end{cases}}\)

\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2014}-1}{x-2014}+\frac{1}{4}-\frac{\sqrt{y-2015}-1}{y-2015}+\frac{1}{4}-\frac{\sqrt{z-2016}-1}{z-2016}=0\)

\(\Leftrightarrow\frac{x-2010-4\sqrt{x-2014}}{4\left(x-2014\right)}+\frac{y-2011-4\sqrt{y-2015}}{4\left(y-2015\right)}+\frac{z-2012-4\sqrt{z-2016}}{4\left(x-2014\right)}=0\)

\(\Leftrightarrow\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}+\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}+\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}=0\)( 1 )

Mà \(\hept{\begin{cases}\frac{\left(2-\sqrt{x-2014}\right)^2}{4\left(x-2014\right)}\ge0\forall x>2014\\\frac{\left(2-\sqrt{y-2015}\right)^2}{4\left(y-2015\right)}\ge0\forall y>2015\\\frac{\left(2-\sqrt{z-2016}\right)^2}{4\left(z-2016\right)}\ge0\forall z>2016\end{cases}}\)( 2 )

Từ ( 1 ) và ( 2 ) => \(\hept{\begin{cases}\left(2-\sqrt{x-2014}\right)^2=0\\\left(2-\sqrt{y-2015}\right)^2=0\\\left(2-\sqrt{z-2016}\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}\sqrt{x-2014}=2\\\sqrt{y-2015}=2\\\sqrt{z-2016}=2\end{cases}}\)<=>\(\hept{\begin{cases}x=2018\\y=2019\\z=2020\end{cases}}\)( tmđk )

Vậy ( x ; y ; z ) = ( 2018 ; 2019 ; 2020 )

Khách vãng lai đã xóa
vuong hien duc
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 2 2019 lúc 21:55

Ta có:\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)

\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)

\(\ge\left|x-2013+2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)

\(=3+\left|x-2014\right|+\left|y-2015\right|\)

\(\ge3+0+0=3\)

Mà \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)

\(\Rightarrow\) Dấu "=" xảy ra khi và chỉ khi:

\(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\left(1\right)\\x=2014\left(2\right)\\y=2015\end{cases}}\)

Dễ thấy \(\left(2\right)\) thỏa mãn \(\left(1\right)\) nên \(x=2014;y=2015\)