NẾU \(\left(A+B\right)^2=\left(B+C\right)^2=20182019\)THÌ \(\left(A+C\right)^2=?\)
AI TRẢ LỜI ĐƯỢC MÌNH SẼ TÍCH ĐÚNG
Cho \(a^2\left(b+c\right)=b^2\left(a+c\right)=20182019\)
Tính \(c^2\left(a+b\right)=20182019\)
Phân tích đa thức sau thành nhân tử: \(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right).\)
Ai làm nhanh, đầy đủ và đúng nhất mình sẽ tick! ^_^
a^3(c−b^2)+b^3(a−c^2)+c^3(b−a^2)+abc(abc−1)
=a^3c−a^3b^2+b^3(a−c^2)+bc^3−a^2c^3+a^2b^2c^2−abc
=(a^3c−a^2c^3)+b^3(a−c^2)−(a^3b^2−a^2b^2c^2)+(bc^3−abc)
=a^2c(a−c^2)+b^3(a−c^2)−a^2b^2(a−c^2)−bc(a−c^2)
=(a^2c+b^3−a^2b^2−bc)(a−c2)
=[c(a^2−b)−b^2(a^2−b)](a−c^2)=(a^2-b)(c-b^2)(a-c^2)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra tỷ lệ thức : \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+^{ }b^2}{c^2+d^2}\)
Ai trả lời đúng mình sẽ Tick cho nha!
Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=> \(a=bk\)
\(c=dk\)
Ta có:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2\times k^2+b^2}{d^2\times k^2+d^2}=\dfrac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
=> đpcm
Cảm ơn bạn nha. Mình tick đúng cho bạn rồi đó.
CMR: \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)-\left(b+c\right)\left(c+a\right)-\left(a+b\right)\left(c+a\right)=a^2+b^2+c^2-ab-bc-ca\)
Bài này mk cần một cách làm sử dụng hằng đẳng thức hoặc một cách làm thông minh chứ không phải là phân tích hết ra từng cái vd (a+b)^2=a^2+2ab+b^2 r cộng lại. Có cho phép sử dụng phân tích nhưng không phải là kiểu phân tích từ đầu tức là phân tích từng cái như mình đã nói ở trên
AI GIẢI ĐƯỢC MK SẼ TÍCH CHO 3 TÍCH. CẢM ƠN RẤT NHIỀU
Đặt \(\hept{\begin{cases}a+b=m\\b+c=n\\c+a=p\end{cases}}\)
Xem VT = A
\(\Rightarrow A=m^2+n^2+p^2-mn-np-mp\)
\(2A=\left(m-n\right)^2+\left(n-p\right)^2+\left(p-m\right)^2\)
\(=\left(a+b-b-c\right)^2+\left(b+c-c-a\right)^2+\left(c+a-a-b\right)^2\)
\(=\left(a-c\right)^2+\left(b-a\right)^2+\left(c-b\right)^2\)
\(=a^2-2ac+c^2+b^2-2ab+a^2+c^2-2bc+b^2\)
\(=2\left(a^2+b^2+c^2-2ab-2bc-2ac\right)\)
\(\Rightarrow A=a^2+b^2+c^2-ab-bc-ca\)(đpcm)
Tính M = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{20^2}-1\right)\)
Ai trả lời đúng và nhanh nhất mình sẽ tích nhé !
Mình chưa học lớp 7
Mình mới học lớp 5 thôi
Xin lỗi nha
Phân tích đa thức thành nhân tử. Bạn nào giải đúng mình sẽ tặng một account vip Zing MP3, inbox để lấy
\(\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^2-\left(c+a-b\right)^2\)
Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath
Chứng minh \(a^5\cdot\left(b^2+c^2\right)+b^5\cdot\left(a^2+c^2\right)+c^5\cdot\left(a^2+b^2\right)=\frac{1}{2}\cdot\left(a^3+b^3+c^3\right)\cdot\left(a^4+b^4+c^4\right)\)với \(a+b+c=0\)
Ai giúp mình làm bài này nhanh và đúng nhất, mình sẽ like nha!
CMR : Nếu a+b+c chia hết cho 6 thì \(a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)⋮6\)
Ai hiair được thì em phục sác đất luôn ý
Ta có:
a2(b + c) + b2(a + c) + c2(a + b)
= a2b + a2c + b2a + b2c + c2a + c2b
= (a2b + b2a) + (a2c + c2a) + (b2c + c2b)
= ab(a + b) + ac(a + c) + bc(b + c)
= ab(a + b + c) + ac(a + b + c) + bc(a + b + c) - abc - abc - abc
= (a + b + c)(ab + ac + bc) - 3abc
Do \(a+b+c⋮6\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)⋮6\) (1)
Do a + b + c chia hết cho 6 nên trong 3 số này tồn tại ít nhất 1 số chẵn
\(\Rightarrow3abc⋮6\) (2)
Từ (1) và (2) => a2(b + c) + b2(a + c) + c2(a + b) \(⋮6\left(đpcm\right)\)
thu gọn các đơn thức sau vá tìm hệ số :
a, \([\left(\frac{-1}{3}\right)xy]\times\left(3x^2yz^2\right)\)
b, -54\(y^2\)\(\times\)bx (b là hằng số)
c,-2\(x^2y\cdot\left(\frac{-1}{2}\right)^2x\left(y^2z\right)^3\)
MÌNH CẦN GẤP CẢM ƠN CÁC BẠN ! MÌNH SẼ TÍCH CHO AI CÓ CÂU TRẢ LỜI ĐÚNG NHẤT