Tìm giá trị nhỏ nhất của biểu thức sau F = / 2018 - x / + / 2019 - x /
Tìm x để biểu thức sau đạt giá trị nhỏ nhất.Hãy tìm giá trị nhỏ nhất đó
A=2018+\(|x-2019|\)
Vì \(\left|x-2019\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy Amin = 2018 <=> x = 2019
Tìm giá trị nhỏ nhất của biểu thức C=\(\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
a)tìm giá trị nhỏ nhất của biểu thức E = |x-30|+|y-4|+(z-2018)^2
b)tìm giá trị lớn nhất của biểu thức F = 19-|x-5|-(y-2018)^2
Tìm giá trị nhỏ nhất của biểu thức M = 2018 + ( x - 2019 )2018
Ta có : (x-2019)2018 luôn lớn hơn hoặc bằng 0 nên M sẽ luôn lớn hơn hoặc bằng 2018.Vậy giá trị nhỏ nhất của M là 2018
\(M=2018+\left(x-2019\right)^{2018}\ge2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2019\right)^2=0\)\(\Leftrightarrow\)\(x=2019\)
Vậy GTNN của \(M\) là \(2018\) khi \(x=2019\)
tym tym :>
Biểu thức nào sau đây có giá trị lớn nhất, nhỏ nhất. Tìm giá trị đó và giá trị x,y kèm theo.
a) A = |x-2| + 2019
b) B = 2018 - |x + 1|
c) C = |x - 3| + |y -2| + 2020
Bài giải
a) Không tìm được GTLN
Tìm GTNN :
Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)
Vậy GTNN của \(\left|x-2\right|+2019\) là 2019
b, GTLN :
Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)
\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)
GTNN không tìm được
c, Quên cách làm rồi !
a) A= |x+2| + 2019
Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN
Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x
nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x
Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019
Khi đó: |x+2|=0
=> x+2 =0
=> x=-2
Vậy biểu thức A đạt GTNN là 2019 khi x= -2
b) B= 2018 - |x+1|
Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN
Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x
Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018
Khi đó: |x+1| =0
=> x+1 =0
=> x=-1
Vậy biểu thức B đạt GTLN là 2018 khi x =-1
c) C = |x-3| + |y-2| +2020
Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN
Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x
và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y
=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y
=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y
Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020
Khi đó: |x-3|=0 và |y-2|=0
=> x-3=0 và y-2=0
=> x=3 và y=2
Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2
Giá trị nhỏ nhất của biểu thức: |x| + 2020 là:
A. 2019 B. 2018 C. 0 D. 2020
Ta có |x| \(\ge\) 0 \(\forall\) x
\(\Rightarrow\left|x\right|+2020\ge2020\)
D
Tìm giá trị nhỏ nhất của biểu thức sau:
D =|-5x - 20| + 2018
F = |x + 1| + 2.|6,9 - 3y| + 38
\(D=\left|-5x-20\right|+2018\)
Ta có: \(\left|-5x-20\right|\ge0\forall x\)
\(\Rightarrow\)\(\left|-5x-20\right|+2018\ge2018\forall x\)
\(D=2018\Leftrightarrow\left|-5x-20\right|=0\Leftrightarrow x=-4\)
Vậy \(D_{min}=2018\Leftrightarrow x=-4\)
\(F=\left|x+1\right|+2.\left|6,9-3y\right|+38\)
Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\forall x\\2.\left|6,9-3y\right|\ge0\forall y\end{cases}\Rightarrow\left|x+1\right|+2.\left|6,9-3y\right|+38\ge38\forall x;y}\)
\(F=38\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=0\\2.\left|6,9-3y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2,3\end{cases}}\)
\(F_{min}=38\Leftrightarrow x=-1;y=2,3\)
Tham khảo nhé~
d/ Vì \(|\)-5x-20\(|\)\(\ge\)0 với mọi x
\(\Rightarrow\)|-5x-20| +2018 \(\ge\)2018
\(\Rightarrow\)D\(\ge\)2018
Dấu "=" xảy ra khi: |-5x-20|=0
\(\Leftrightarrow\)-5x-20=0
\(\Leftrightarrow\)-5x=20
\(\Rightarrow\) x=-4
Vậy GTNN của D= 2018 khi x=-4
e/ Vì |x+1| \(\ge\) 0 với mọi x
|6.9-3y| \(\ge\) 0 với mọi y
\(\Rightarrow\) 2|6.9-3y| \(\ge\)0 với mọi y
\(\Rightarrow\)|x+1|+2|6.9-3y|+38 \(\ge\)38 với mọi x, y
\(\Rightarrow\)E\(\ge\)38 với mọi x,y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+1\right|=0\\2\left|6,9-3y\right|=0\hept{\begin{cases}\\\\\end{cases}}\\\end{cases}}\)|X+1|=0 VÀ 2|6.9-3y|=0
Suy ra: x+1= 0 và 6,9-3y= 0
Suy ra: x=-1 và y= 2,3
Vậy GTNN của E= 38 khi x= -1 và y= 2,3
k cho mk nhá
Hok tốt ^-^
a, tìm x,y để biểu thức A=|x|+|y+1| đạt giá trị nhỏ nhất
b, tìm x,y biết |x-2018|+|y+2019|=0
b, tìm x,y biết |x-2018|+|y+2019|=0
\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)
vậy x=2018 ; y=-2019
a)
ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)
mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)
Tìm giá trị nhỏ nhất của biểu thức sau: A = |x − 2019| + |x − 2020| + |x − 2021