Phân tích thành nhân tử : a) (4x^2 -25)^2 - 9(2x-5)^2
b) 4(2x-3)^2 - 9(4x^2 -9)^2
Phân tích đa thức sao thành nhân tử
a)x^3-2x^2
b)2x(x-3)+9.(3-x)
c)x^2+4x+4-y^2
a: \(=x^2\left(x-2\right)\)
b: \(=\left(x-3\right)\left(2x-9\right)\)
Phân tích đa thức sao thành nhân tử
a)x^3-2x^2
b)2x(x-3)+9.(3-x)
c)x^2+4x+4-y^2
\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
Đa thức 4 x 2 - 12 x + 9 phân tích thành nhân tử là:
A. ( 2 x - 3 ) 2
B. 2x+3
C. 4x-9
D. ( 2 x + 3 ) 2
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 9(x^2-2x-3)^4-37x^2(x^2-2x-3)^2+4x^2
Phân tích đa thức thành nhân tử
1) (x^2-25)^2-(x-5)^2
2) ( 4x^2-25)^2 - 9(2x-5)^2
1/\(\left(x^2-25\right)^2-\left(x-5\right)^2\)
<=>\(\left[\left(x-5\right)\left(x+5\right)\right]^2-\left(x-5\right)^2\)
<=>\(\left(x-5\right)^2\left[\left(x+5\right)^2-1\right]\)
2/\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
<=>\(\left[\left(2x-5\right)\left(2x+5\right)\right]^2-9\left(2x-5\right)^2\)
<=>\(\left(2x-5\right)\left[\left(2x+5\right)^2-9\right]\)
#hoctot<3#
Phân tích đa thức thành nhân tử:
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(a^6-a^4+2a^3+2a^2\)
a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)
\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)
\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)
\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)
\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)
\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)
\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)
\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)
b) \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)
\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)
phân tích đa thức thành nhân tử
a) (x2-25)2-(x-5)2
b) (4x2-25)2-9(2x-5)2
c) 4(2x-3)2-9(4x2-9)2
d) a6-a4+2a3+2a2
e) (3x2+3x+2)2-(3x2+3x-2)2
a) ( x2 - 25 )2 - ( x - 5 )2
= [ ( x - 5 )( x + 5 ) ]2 - ( x - 5 )2
= [ ( x - 5 )( x + 5 ) - ( x - 5 ) ][ ( x - 5 )( x + 5 ) + ( x - 5 ) ]
= ( x - 5 )( x + 5 - 1 )( x - 5 )( x + 5 + 1 )
= ( x - 5 )2( x + 4 )( x + 6 )
b) ( 4x2 - 25 )2 - 9( 2x - 5 )2
= ( 4x2 - 25 )2 - 32( 2x - 5 )2
= ( 4x2 - 25 )2 - ( 6x - 15 )2
= [ ( 4x2 - 25 ) - ( 6x - 15 ) ][ ( 4x2 - 25 ) + ( 6x - 15 ) ]
= ( 4x2 - 25 - 6x + 15 )( 4x2 - 25 + 6x - 15 )
= ( 4x2 - 6x - 10 )( 4x2 + 6x - 40 )
= ( 4x2 + 4x - 10x - 10 )( 4x2 + 16x - 10x - 40 )
= [ 4x( x + 1 ) - 10( x + 1 ) ][ 4x( x + 4 ) - 10( x + 4 ) ]
= ( x + 1 )( 4x - 10 )( x + 4 )( 4x - 10 )
= ( 4x - 10 )2( x + 1 )( x + 4 )
c) 4( 2x - 3 )2 - 9( 4x2 - 9 )2
= 22( 2x - 3 )2 - 32( 4x2 - 9 )2
= ( 4x - 6 )2 - ( 12x2 - 27 )2
= [ ( 4x - 6 ) - ( 12x2 - 27 ) ][ ( 4x - 6 ) + ( 12x2 - 27 ) ]
= ( 4x - 6 - 12x2 + 27 )( 4x - 6 + 12x2 - 27 )
= ( -12x2 + 4x + 21 )( 12x2 + 4x - 33 )
= ( -12x2 + 18x - 14x + 21 )( 12x2 - 18x + 22x - 33 )
= [ -12x( x - 3/2 ) - 14( x - 3/2 ) ][ 12x( x - 3/2 ) + 22( x - 3/2 ) ]
= ( x - 3/2 )( -12x - 14 )( x - 3/2 )( 12x + 22 )
= ( x - 3/2 )2( -12x - 14 )( 12x + 22 )
d) a6 - a4 + 2a3 + 2a2
= a2( a4 - a2 + 2a + 2 )
= a2( a4 - 2a3 + 2a3 + 2a2 - 4a2 + a2 + 4a - 2a + 2 )
= a2[ ( a4 - 2a3 + 2a2 ) + ( 2a3 - 4a2 + 4a ) + ( a2 - 2a + 2 ) ]
= a2[ a2( a2 - 2a + 2 ) + 2a( a2 - 2a + 2 ) + 1( a2 - 2a + 2 ) ]
= a2( a2 + 2a + 1 )( a2 - 2a + 2 )
= a2( a + 1 )2( a2 - 2a + 2 )
e) ( 3x2 + 3x + 2 )2 - ( 3x2 + 3x - 2 )2
= [ ( 3x2 + 3x + 2 ) - ( 3x2 + 3x - 2 ) ][ ( 3x2 + 3x + 2 ) + ( 3x2 + 3x - 2 ) ]
= ( 3x2 + 3x + 2 - 3x2 - 3x + 2 )( 3x2 + 3x + 2 + 3x2 + 3x - 2 )
= 4( 6x2 + 6x )
= 4.6x( x + 1 )
= 24( x + 1 )
e) là 24x( x + 1 ) nhé mình đánh thiếu
Phân tích đa thức thành nhân tử
a) (4x^2 - 3x - 18)^2 - (4x^2 + 3x)^2
b) 9(x + y - 1)^2 - 4(2x + 3y +1)^2
c) -4x^2 + 12xy - 9y^2 + 25
d) x^2 - 2xy + y^2 - 4m^2 + 4mn - n^2
a) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(4x^2-9\right)\)
\(=-12\left(x+3\right)\left(2x-3\right)\left(2x+3\right)\)
b) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=-\left(x+3y+5\right)\left(7x+9y-1\right)\)
c) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-25\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
a) (4x2-3x-18)2-(4x2+3x)2
=(4x2-3x-18-4x2-3x)(4x2-3x-18+4x2+3x)
=(-6x-18)(8x2-18)
=-48x3+108x-144x2+324
1) 4(2x-3)^2-9(4x^2-9)^2
2) a^6-a^4+2a^3+2a^2
Phân tích đa thức thành nhân tử
a) 4(2x-3)^2-9(4x^2-9)^2
=[2(2x-3)]^2-[3(4x^2-9)]^2
=(4x-6)^2-(12x^2-27)^2
=(4x-6+12x^2-27)(4x-6-12x^2+27)
=(12x^2+4x-33)(4x-12x^2+21)
b) a^6-a^4+2a^3+2a^2
=a^4(a^2-1)+2a^2(a+1)
=a^4(a+1)(a-1)+2a^2(a+1)
=(a+1)[(a^4)(a-1)+2a^2]
=(a+1)(a^5+a^4+2a^2)