Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KHANH QUYNH MAI PHAM
Xem chi tiết
Pham Van Hung
25 tháng 9 2018 lúc 12:35

\(Q=a^4-3a^3+4a^2-a+2\)

    \(=a^4-2a^3+a^2-a^3+a^2+a+2a^2-2a-2+4\)

    \(=\left(a^2-a\right)^2-a\left(a^2-a-1\right)+2\left(a^2-a-1\right)+4\)

    \(=1^2-0+0+4=5\)

Chúc bạn học tốt.

      

X Drake
Xem chi tiết
Đặng Nguyễn Khánh Uyên
2 tháng 2 2017 lúc 14:33

\(P=\frac{a^4+a^2+1}{a^2}\)

   \(=\frac{a^2-a+1}{a}.\frac{a^2+a+1}{a}\)

   \(=\frac{\left(a^2-4a+1\right)+3a}{a}.\frac{\left(a^2-4a+1\right)+5a}{a}\)

   \(=\frac{3a}{a}.\frac{5a}{a}=15\)

Vậy \(P=15\)

ngonhuminh
2 tháng 2 2017 lúc 14:30

\(a^2-4a+1=0\Rightarrow a^2=4a-1\)(*)

với a=0 hoặc a=1/4 không phải là nghiệm

xét a khác 0 và a>1/4

bình phương hai vế (*)

=> a^4=16a^2-8a+1=2(a^2-4a+1)+14a^2-1=14a^2-1 

\(P=\frac{14a^2-1+a^2+1}{a^2}=15\)

02-Nguyễn Thiện Anh
Xem chi tiết

a: Ta có: \(\frac{1}{2a-b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\)

\(=\frac{1}{2a-b}-\frac{a^2-1}{a^2\left(2a-b\right)+\left(2a-b\right)}\)

\(=\frac{1}{2a-b}-\frac{a^2-1}{\left(2a-b\right)\left(a^2+1\right)}=\frac{a^2+1-a^2+1}{\left(2a-b\right)\left(a^2+1\right)}=\frac{2}{\left(2a-b\right)\left(a^2+1\right)}\)

\(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\)

\(=\frac{4a+2b}{ab\left(a^2+1\right)}-\frac{2}{a}=\frac{4a+2b-2b\left(a^2+1\right)}{ab\left(a^2+1\right)}\)

\(=\frac{4a-2a^2b}{ab\left(a^2+1\right)}=\frac{2a\left(2-ab\right)}{ab\cdot\left(a^2+1\right)}=\frac{2\left(2-ab\right)}{b\left(a^2+1\right)}\)

Ta có: \(A=\left(\frac{1}{2a-b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right):\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)

\(=\frac{2}{\left(2a-b\right)\left(a^2+1\right)}:\frac{2\left(2-ab\right)}{b\left(a^2+1\right)}=\frac{2b\left(a^2+1\right)}{2\left(2-ab\right)\left(2a-b\right)\left(a^2+1\right)}=\frac{b}{\left(2-ab\right)\left(2a-b\right)}\)

b:

Sửa đề: b>a>0

\(4a^2+b^2=5ab\)

=>\(4a^2-5ab+b^2=0\)

=>\(4a^2-4ab-ab+b^2=0\)

=>(a-b)(4a-b)=0

TH1: a-b=0

=>a=b

mà a>b

nên Loại

TH2: 4a-b=0

=>b=4a(nhận)

\(A=\frac{b}{\left(2-ab\right)\left(2a-b\right)}\)

\(=\frac{4a}{\left(2-a\cdot4a\right)\left(2a-4a\right)}=\frac{4a}{\left(2-4a^2\right)\left(-2a\right)}\)

\(=\frac{4a}{-2a\cdot\left(-2\right)\left(2a^2-1\right)}=\frac{1}{2a^2-1}\)

Hot boy 2k5
Xem chi tiết
Hoang Minh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 3 2021 lúc 12:59

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

Khách vãng lai đã xóa
Ngô Chi Lan
10 tháng 3 2021 lúc 20:03

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

Khách vãng lai đã xóa
Trịnh Quỳnh Anh
30 tháng 3 2021 lúc 19:20
a=(a+y)(y+a)=a+a-a
Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Trung kiên Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 13:28

a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)

b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)

Để P lớn nhất thì căn x-2=1

=>căn x=3

=>x=9

hieu nguyen
Xem chi tiết
_Guiltykamikk_
31 tháng 3 2018 lúc 21:39

\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)

\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)

\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)

\(A=\frac{-1}{x^2}\)

_Guiltykamikk_
31 tháng 3 2018 lúc 22:02

Ta có :\(x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)

\(\Rightarrow A=\frac{-1}{2^2}\)

\(A=\frac{-1}{4}\)

_Guiltykamikk_
31 tháng 3 2018 lúc 22:03

c)

Để A < 0

thì -1 và x^2 phải khác dấu

....

( tự làm )