Cho biết biểu thức A = \(\dfrac{4}{2\sqrt{x}-x}\) B = \(\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\) với x > 0,x ≠ 4
a,Tính giá trị biểu thức A khi x = 2
b,Chứng minh rằng P = B : A = 1 - \(\sqrt{x}\)
Câu 1: Cho A = (sqrt(x) + 1)/(sqrt(x) - 1) B = (sqrt(x) + 2)/(sqrt(x) - 2) - 3/(sqrt(x) + 2) + 12/(4 - x) với x >= 0 x ne1; x = 4
a) Tính giá trị biểu thức A khi x = 16 .
b) Chứng minh B = (sqrt(x) - 1)/(sqrt(x) - 2)
c) Biết P =A.B Tính giá trị nguyên của x để P lớn nhất.
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
Cho 2 biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và B\(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\) với x ≥ 0 ; x≠ 25
a) Tính giá trị biểu thức khi x = 9. Chứng minh rằng B =\(\dfrac{1}{\sqrt{x}+5}\)
b) Tìm tất cả các giá trị của x để A = B .|x-4|
Cho biểu thức A=\(\dfrac{6-2\sqrt{x}}{\sqrt{x}-5}\) và B=\(\dfrac{1}{\sqrt{x}-5}-\dfrac{x+3\sqrt{x}}{25-x}\)với x>0, x # 25.
1) Tính giá trị biểu thức A khi x =16.
2) Chứng minh rằng A +B là một số nguyên.
(2 điểm) Cho hai biểu thức $A=\dfrac{\sqrt{x}}{\sqrt{x}+3}$ và $B=\dfrac{2 \sqrt{x}}{\sqrt{x}-3}-\dfrac{3 x+9}{x-9}$ với $x \geq 0, x \neq 9$.
1) Tính giá trị của biểu thức $A$ khi $x=16$.
2) Chứng minh $A+B=\dfrac{3}{\sqrt{x}+3}$.
Bài 1 :Cho hai biểu thức\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và\(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\) với x≥ 0; x≠1
a. Tính giá trị của biểu thức A khi x = 4
b. Chứng minh\(\dfrac{2}{\sqrt{x}+1}\)
Bài 2:
Cho biểu thức:\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn P
Cho biểu thức A=2√x - 3/√x - 2 và B=2/√x+3 + √x/√x-3 + 4√x/9-x với x≥0; x≠4; x≠9. a) tính giá trị biểu thức A khi x thỏa mãn |x-2|=2. b) rút gọn biểu thức B. c) đặt C=A.B. Tìm x để C≥1.