cho 3 so a,b,c . Biet A+B=6 , B+C=6.4 , A+C=7.6. Tìm giá trị của mổi số
tìm giá trị của mổi chữ số a , b , c bít rằng trong cùng 1 hàng thì giá trị của chữ số a hơn giá trị của chữ số b là 2 đơn vị
gợi ý : a,bc + b,acb = 8,94
cho các số nguyên dương a,b,c thỏa mãn a^3 + b^3 + c^3 = 6(a + b + c). Tìm giá trị nhỏ nhất của tổng a + b+ c
Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.
cho 3 tỉ số = nhau là a/b+c ; b/c+a ; c/a+b
tìm gt của mổi tỉ số đó
Giả sử a = 0 \(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=0\)
\(\Rightarrow a=b=c=0\)
Vô lý vì nếu như vậy mẫu của mỗi phân số trên sẽ không tồn tại. Dó đó \(a;b;c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
Do đó giá trị mỗi tỉ số đó là \(\frac{1}{2}.\)
cho a+b+c+ab+bc+ca=6
tìm giá trị nhỏ nhất của a^3/b+b^3/c+c^3/a
\(A=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}\)
\(=a^2+b^2+c^2\)
Ez chưa :v
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a\(^3\) + b\(^3\)
.
6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
5. Ta có b = 1 – a, do đó M = a\(^3\) + (1 – a)\(^3\) = 3(a – 1⁄2)2 + 1⁄4 ≥ 1⁄4 . Dấu “=” xảy ra khi a = 1⁄2 .
Vậy min M = 1⁄4 => a = b = 1⁄2 .
6. Đặt a = 1 + x => b 3 = 2 – a\(^3\) = 2 – (1 + x)\(^3\) = 1 – 3x – 3x\(^2\)– x\(^3\) ≤ 1 – 3x + 3x\(^2\)– x\(^3\) = (1 – x)\(^3\)
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a\(^3\) + b\(^3\) = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)\(^2\)(a + b).
a)Tìm giá trị nhỏ nhất của các phân số sau
a)A=3|2x-1|-5
b)B=6/3-2|x|
c)C=x²+3|y-2|-1
b)Tìm giá trị lớn nhất của các phân số sau
a)A=10-5|3x-2|
b)B=5-|2x-1|²
c)C=1/|x-2|+3
Cho các số nguyên a,b,c thỏa mãn a^2+b^2=c^2 và 3a^2+2ab+3b^2=12.Hãy chứng tỏ 3<=c^2<=6 và tìm giá trị của a,b,c
Cho 3 số a,b,c thỏa mãn a + b + c = 2. tìm giá trị nhỏ nhất của biểu thức :
A = a+ b+ c
A.
B.
C.
D.