Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quan phan
Xem chi tiết
Mi Tran
14 tháng 6 2015 lúc 13:42

a) Xét tam giác OEB và tam giác OMC có:

  góc OBE = góc OCM (t/c đường chéo hv)

  OC = OB ( nt)

  EB = MC (gt)

  Vậy tam giác OEB = tam giác OMC (c-g-c)

=> EO = MO (1) và góc EOB = góc MOC

                        mà góc BOC = góc BOM + góc MOC = 90 độ

                     => góc EOM = góc EOB + góc BOM = 90 độ (2)

Từ (1),(2) => tam giác OEM vuông cân

b) Ta có: AB//CN (N thuộc DC)

ÁP dụng định lí Ta - let tá được:

 AM/MN= BM/MC mà BM=AE và MC=BE (gt)

=> AM/MN = AE/BE

=> EM//BN (đ/l Ta - let đảo)

Phần còn lại mình còn đang suy nghĩ.

vu dieu linh
Xem chi tiết
Triết Nguyễn Minh
Xem chi tiết
Sao Băng
10 tháng 2 2017 lúc 21:58
Câu cuối hơi khó
Tiểu đội 3 con chó
19 tháng 3 2017 lúc 12:34

cuoi cau nay hoi kho mot chut nhung van de dang

lê trần anh khôi
Xem chi tiết
Cô Hoàng Huyền
30 tháng 10 2017 lúc 9:47

Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [D, A] Đoạn thẳng j: Đoạn thẳng [D, B] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [C, N] Đoạn thẳng r: Đoạn thẳng [O, M] Đoạn thẳng q: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [E, M] Đoạn thẳng t: Đoạn thẳng [B, N] Đoạn thẳng b: Đoạn thẳng [C, H] Đoạn thẳng f_1: Đoạn thẳng [H, M] A = (-2.56, 2.02) A = (-2.56, 2.02) A = (-2.56, 2.02) B = (1.54, 1.98) B = (1.54, 1.98) B = (1.54, 1.98) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t

a) Xét tam giác OEB và tam giác OMC có:

OB = OC (Vì ABCD là hình vuông)

EB = MC (gt)

\(\widehat{OCM}=\widehat{OBE}\left(=45^o\right)\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)

Ta có \(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)

Vậy tam giác OEM vuông cân.

b)  Ta luôn có \(\Delta CMN\sim\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\) 

Lại có \(CM=BE\), mà AB = BC nên AE = MB

Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)

Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\) , áp dụng định lý Ta-let đảo, ta có EM // BN.

c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)

Suy ra \(\Delta OMC\sim\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)

Xét tam giác OMB và tam giác CMH' có :

\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)

Góc \(\widehat{OMB}=\widehat{CMH'}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta OMB\sim\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)

Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^o+45^o=90^o\)

Hay \(CH'\perp BN\)

Vậy H trùng H' hay O, M , H thẳng hàng.

roronoa zoro
Xem chi tiết
Tuấn Nguyễn
17 tháng 7 2019 lúc 21:26

A B C D O E M H N

a) Xét tam giác OEB và tam giác OMC có:

OB = OC (Do ABCD là hình vuông)

EB = MC (gt)

\(\widehat{OCM}=\widehat{OBE}=45^o\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)

Ta có:

\(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)

Vậy tam giác OEM vuông cân.

P/s: 2 câu dưới mai làm cho :v

Tuấn Nguyễn
19 tháng 7 2019 lúc 15:34

b) Ta luôn có: \(\Delta CMN~\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\)

Lại có CM = BE, mà AB = BC nên AE = MB

Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)

Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\), áp dụng định lí Ta-let đảo, ta có EM // BN

c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)

\(\Rightarrow\Delta OMC~\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)

Xét tam giác OMB và tam giác CMH' có:

\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)

\(\widehat{OMB}=\widehat{CMH'}\) ( Hai góc đối đỉnh)

\(\Rightarrow\Delta OMB~\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)

Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^0+45^0=90^0\)

Hay \(CH'\perp BN\)

=> H trùng H' => O, M, N thẳng hàng

Đinh Quang Hiển
20 tháng 3 2020 lúc 10:45

chơi surviv.io

Khách vãng lai đã xóa
Ninh Đức Toàn
Xem chi tiết
Võ Trương Anh Thư
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
Hoàng Thị Vân
Xem chi tiết