Cho hình bình hành ABCD và 1 đường thẳng d ở ngoài hình bình hành
Gọi M,N,P,Q lần lượt là các hình chiếu của A,B,C,D trên d
chứng minh AM+CP=BN+DQ
Cho hình bình hành ABCD. Ta kẻ đường thẳng ∆ nằm ngoài hình bình hành. Hạ AM, BN, CP, DQ vuông góc ∆; M, N, P, Q ∈ ∆. Chứng minh rằng 𝐴𝑀 + 𝐶𝑃 = 𝐵𝑁 + 𝐷𝑄
Cho hình bình hành ABCD và đường thẳng d nằm ngoài hình bình hành đó. gọi A' , B', C' , D' lần lượt là hình chiếu của các điểm A , B, C, D lên d
c/m AA'+CC'=BB'+Đ'
: Cho hình bình hành ABCD có góc A nhọn. Gọi I và K lần lượt là hình chiếu của B và D trên đường chéo AC. Gọi M và N là hình chiếu của C trên các đường thẳng AB, AD. Chứng minh:
a) AK = IC
b) Tứ giác BIDK là hình bình hành
c) AC2=AD.AN+AB.AM
Cho hình bình hành ABCD. Đường thẳng d nằm ngoài hình bình hành. Gọi A', B', C', D' lần lượt là hình chiếu của A,B,C,D lên d. Chứng minh AA' + CC' = BB' + DD'
Cho hình bình hành ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM=CP; BN=DQ.
Chứng minh:
a, MNPQ là hình bình hành
b, AC, BD, MP, NQ đồng quy
a)
Vì BN = DQ , AD = BC => AD - DQ = BC - BN hay AQ = NC
Xét tam giác AQM và CNP có:
\(\hept{\begin{cases}AQ=CN\\AM=CP\\\widehat{QAM}=\widehat{NCP}\left(doABCDl\text{à}hbh\right)\end{cases}}\)
\(\Rightarrow\Delta AQM=\Delta CNP\left(c.g.c\right)\Rightarrow QM=NP\)
Hoàn toàn tương tự: △MBN=△PDQ(c.g.c)⇒MN=PQ
Tứ giác MNPQMNPQ có 2 cặp cạnh đối bằng nhau nên là hình bình hành.
=> MNPQ là hình bình hành.
b) Gọi K là giao điểm của AC và MP
Xét tam giác AKM và CKP ta có:
\(\hept{\begin{cases}\widehat{KAM}=\widehat{KCP}\left(slt\right)\\\widehat{KMA}=\widehat{KPC\left(slt\right)}\\\Rightarrow AM=CP\end{cases}}\)
\(\Rightarrow\Delta AKM=\Delta CKP\left(g.c.g\right)\)
\(\Rightarrow AK=CK;KM=KP\left(1\right)\)
Vì ABCDABCD là hình bình hành nên hai đường chéo AC,BDAC,BD cắt nhau tại trung điểm mỗi đường. Tương tự, MNPQMNPQ là hình bình hành nên MP,QNMP,QN cắt nhau tại trung điểm mỗi đường
Mà từ (1)(1) suy ra KK là trung điểm của AC,MPAC,MP, do đó KK cũng là trung điểm của BD,QNBD,QN
Do đó AC,BD,MP,NQAC,BD,MP,NQ đồng quy tại (trung điểm) KK.
Help me!
Cho hình bình hành ABCD và đường thẳng d nằm ngoài hình bình hành đó. Gọi A', B', C', D' lần lượt là hình chiếu của các điểm A, B, C,D lên đường thẳng d. CMR: AA' + CC' = BB' + DD' .
CẬU LÀ nguyễn thị diệu linh phải không tớ là vũ đức mạnh đây trường thcs văn lang hả
Bài 4. Cho hình bình hành ABCD và một đường thẳng d không cắt các cạnh của hình bình hành. Gọi A0 , B0 , C0 , D0 lần lượt là hình chiếu của A, B, C, D trên đường thẳng d. Chứng minh rằng AA0 + CC0 = BB0 + DD0 .
cho hình bình hành ABCD .Gọi M,N lần lượt là hình chiếu của A,C trên BD và P,Q là hình chiếu của B và D trên AC.c/m MNPQ là hình bình hành
Cho hình bình hành ABCD. Gọi M, N lần lượt là hình chiếu của A, C lên BD và P, Q lần lượt là hình chiếu của B, D lên AC. Chứng minh rằng MPNQ là hình bình hành