Bài 5: Cho hình thang ABCD (AB // CD). Tia phân giác của góc D đi qua trung điểm E của BC. Chứng minh:
1. AD = AB + CD?
2. AE là phân giác của góc DAB ?
a: Xét ΔABE và ΔFCE có
góc EBA=góc ECF
EB=EC
góc BEA=góc CEF
=>ΔABE=ΔFCE
=>EA=EF
=>E là trung điểm của AF
b: Xét ΔDAF có
DE vừa là phân giác, vừa là trung tuyến
=>ΔDAF cân tại D
=>DA=DF=DC+CF=DC+AB
c: góc BAE=góc AFD
=>góc BAE=góc DAE
=>AE là phân giác góc DAB
cho hình thang ABCD có AB//CD . tia phân giác góc D đi qua trung điểm E của BC . chứng minh
a ) AD=AB+CD
b) AE là tia phân giác góc BAD
Bài 1; Cho hình thang ABCD (AD//BC), phân giác góc A cắt BC tại E
a) Chứng minh rằng AB=BE
b)Phân giác góc B cắt AE tại F. Chứng minh BF vuông góc AE và FA=FE
c) Gọi M là trung điểm của AB và N là trung điểm của CD. Chứng minh M,F,N thẳng hàng
Bài 2; Cho hình thang ABCD (AB//CD) có AB+BC=CD . Chúng minh tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD
Bài 3 Cho hình thang ABCD (AB//CD) , tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD . Chứng minh AD+BC=CD
Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath
Bài 3. Cho hình chữ nhật ABCD có tia phân giác góc A đi qua trung điểm E của cạnh CD. Gọi M, N, P theo thứ tự là trung điểm của AD, AE, BC. 1. Chứng minh rằng AB = 2AD và NP = 3NM. 2. Chứng minh rằng AE ⊥ DN. 3. Chứng minh rằng tia phân giác của góc BCD, BE, MN đồng quy
1: Xét ΔADE vuông tại D có \(\widehat{DAE}=\widehat{DEA}\left(=\widehat{EAB}\right)\)
nên ΔADE vuông cân tại D
Suy ra: AD=DE
mà DC=2DE
nên DC=2AD
hay AB=2AD
2: Ta có: ΔADE vuông cân tại D
mà DN là đường trung tuyến ứng với cạnh huyền AE
nên DN là đường cao ứng với cạnh AE
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
cho hình thang ABCD ( AB//CD) , E là trung điểm của BC , cho biết DE là tia phân giác của góc D .
a) CMR AD= AB+ CD
b) CMR tia AE là tia phân giác của góc A
Cho hình thang abcd ab//CD e trung điểm bc de là phân giác góc d, chứng minh:
Ad=ab+cd và ae là phân giác góc a
Cho hình thang ABCD (AD//BC). Tia phân giác góc A cắt cạnh BC tại E a)Chứng minh: AB=BE b)Tia phân giác góc B cătd AE tại F. Chứng minh: BF vuông góc FE c)Gọi M là trung điểm của AB, N là trung điểm của CD. Chứng minh 3 điểm: M, F, N thẳng hàng Giúp mình với ạ, cảm ơn
a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)
nên ΔABE cân tại B
hay BA=BE
b: Ta có: ΔBAE cân tại B
mà BF là đường phân giác ứng với cạnh AC
nên BF là đường cao ứng với cạnh AC
1. Cho hình thang ABCD(AB//CD). M là trung điểm của BC. Cho biết DM là tia phân giác của góc D. Chứng minh rằng tia AM là tia phân giác của góc A.
2.Tứ giác ABCD có AD=BC và AC=BD. Chứng minh rằng ABCD là hình thang cân.
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân