Cho a>0 : a^2+1/a^2=1.Cm a^5+1/a^5=125
giải bài này hộ mình nha,khó quá
Bài 4. Cho A = 1 + 22 + 23 + ... + 211. Không tính tổng A, hãy chứng tỏ A chia hết cho 3.
Bài 5. Chứng tỏ rằng với mọi số tự nhiên n thì n2 + n + 1 là một số lẻ.
giúp tớ với tớ đang cần giải, tớ giải được 3 bài rồi mấy bài này khó quá giải hộ tớ nha
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
Ai làm được bài này(viết cả lời giải) nhắn riêng em gửi cho 20k nha:( khó quá đi
So sánh 2 biểu thức sau:
A= 5^2010 + 1/5^2011 + 1
B= 5^2009 + 1/5^2010 + 1
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{5^{2010}+1}{5^{2011}+1}< \frac{5^{2010}+1+4}{5^{2011}+1+4}\)\(=\frac{5^{2010}+5}{5^{2011}+5}=\frac{5.\left(5^{2009}+1\right)}{5.\left(5^{2010}+1\right)}=\frac{5^{2009}+1}{5^{2010}+1}\)
\(\Rightarrow A< B\)
#)Giải :
Đầu tiên ta so sánh :
52010 và 52009
Vì 2010 > 2009 => 52010 > 52009 (1)
Tiếp theo :
1/52011 + 1 và 1/52010 + 1
Vì 2011 + 1 = 2012 và 2010 + 1 = 2011
Mà 2012 > 2011 => 1/52011 + 1 > 1/52010 + 1 (2)
Từ (1) và (2) => 52010 + 1/52011+1 > 52009+1/52010+1 => A > B
Vậy : A > B
#)Nếu đúng thì bn bảo mk nha :D
#~Will~be~Pens~#
giúp mik với các bạn ơi bài này khó hiểu quá !!!!!!
A=2/1*3+2/3*5+2/5*7......+2/13*15
thank's các bạn nha
Ta dùng phương pháp triệt tiêu sẽ được kết quả cuối cùng là :
1 - \(\frac{1}{15}\) = \(\frac{14}{15}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{15}\)
Cho a>0 : a^2+1/a^2=1.Cm a^5+1/a^5=125
làm hộ MK nha ,mai hok rồi!!!!!!!
bài 1: cho a,b,c>0 CMR
\(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)
các bạn ơi giúp mình bài này khó quá. nhanh nha tối mình đi học rồi. các bạn ơi giúp mình đi mà. Hinh nhu de bai la the nay cac ban giup minh nha
Với a,b >0.Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi a=b
MẤY BẠN GIẢI NHANH GIÚP MÌNH MẤY BÀI TOÁN KHÓ NÀY NHA, MAI MÌNH ĐẾN HẠNG NỘP RỒI:
a) Cho a,b,c >0 thỏa 1/a+1/c=2/b. Chứng ming (a+b)/(2a-b)+ (b+c)/(2c-b) >=4
b) cho a,b >0 và a+b<=1. Chứng minh 1/(a^2+ab) + 1/(b^2+ab) >=4
c) cho a,b,c>0. Chứng minh (a+b+c)(a^2+b^2+c^2)>=9abc
Mấy bài này khó quá,bạn nào giải được mình xin cảm ơn nha :
Bài 1 : Cho a là số tự nhiên lẻ, b là một số tự nhiên. Chứng minh rằng các số:
a) a và ab+4 là 2 số nguyên tố cùng nhau
b)Tìm n để n+2 và 3n+11 là 2 số nguyên tố cùng nhau (n là số tự nhiên)
Bài 2: Chứng minh rằng : S=1+3+5+.........+ (2n-1) (n thuộc N*) là số chính phương .
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
Số các số hạng của S là: \(\frac{\left(2n-1-1\right)}{2}+1=n-1+1=n\).
S = 1 + 3 + 5 + ........ (2n - 1)
\(=\frac{\left(2n-1+1\right).n}{2}=n.n=n^2\).
Suy ra S là một số chính phương.
Bài này khó quá, mình giải không ra. Các bạn giải hộ mình với:
A= 1/2 +1/6 +1/18 +1/54 +.....+1/1458 +1/4374
\(=>2A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{2187}\)
\(=>6A=3+1+\frac{1}{3}+...+\frac{1}{729}\)
\(=>6A-2A=3-\frac{1}{2187}\)
\(4A=3-\frac{1}{2187}=>A=\frac{3}{4}-\frac{1}{8724}\)
Các bạn giải hộ mình nha:
Cho A=20+163-3n-1
với n là số tự nhiên chẵn,n lớn hơn hoặc bằng -2
Chứng minh rằng A chia hết cho 323
Câu hỏi này khó quá mình không giải được cho nên các bạn giải giúp mình nha!