cho tam giác ABC vuông tại a có AB=3cm, AC=4cm. Đường phân giác AD. Đường vuông góc với DC tại D cắt AC ở E.
a, CMR: tam giác ABC đồng dạng với tam giác DEC.
b, Tính: BC, BD
c, Tính AD
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) CM: tam giác ABC và DEC đồng dạng
b) Tính độ dài các đoạn thẳng BC, BD
c) Tính độ dài AD
d) Tính d.tích tam giác ABC và d.tích tứ giác ABDE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a, CMR: Tam giác ABC đồng dạng tam giác DEC
b, Tính độ dài các đoạn thẳng BC, BD
c, Tính độ dài AD
d, Tính diện tích tam giác ABC và diện tích tứ giác ABDE
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
CHO TAM GIÁC ABC VUÔNG TẠI A,CÓ AB=3CM;AC=4CM; ĐƯỜNG PHÂN GIÁC AD, ĐƯỜNG VUÔNG GÓC VỚI DC CẮT AC Ở E.
A) CMR TAM GIÁC ABC VÀ TAM GIÁC DEC ĐỒNG DẠNG
B) TINH DỘ DÀI BC,BD
C) TÍNH DIỆN TÍCH TAM GIÁC ABC VÀ DIỆN TÍCH TỨ GIÁC ABDE
Cho tam giác ABC vuông tại A, có AB=3cm, AC=4cm, đường phân giác AD .Đường vuông góc với DC cắt AC ở E
a/ C/m rằng tam giác ABC và tam giác DEC đồng dạng
b/ Tính độ dài các đoạn thẳng BC, BD
c/ Tính độ dài AD
d/ Tính diện tích tam giác ABC và diện tích tứ giác ABDE
Cho tam giác ABC vuông tại A, có AB = 3cm , Ac=4cm , đường phân giác AD . Đường vuông góc với DC tại D cắt AC ở E
a) Chứng minh rằng tm giác ABC và tam giác DEC đồng dạng
b) Tính độ dài đoạn thẳng BC,BD
c) Tính độ dài AD
d) Tính diện tích tam giác ABC và diện thích tứ giác ABDE
a, Xét tam giác ABC và tam giác DEC ta có
^BAC = ^EDC = 900
^C_ chung
Vậy tam giác ABC ~ tam giác DEC ( g.g )
b, tam giác ABC vuông tại A
Áp dụng định lí Py ta go cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=9+16=25\Rightarrow BC=5\)cm
Vì AD là tia phân giác ^A nên \(\frac{AB}{AC}=\frac{BD}{DC}\)mà DC = BC - BD = 5 - BD
\(\Rightarrow\frac{3}{4}=\frac{BD}{5-BD}\Rightarrow15-3BD=4BD\)
\(\Rightarrow7BD=15\Rightarrow BD=\frac{15}{7}\)cm
c, Ta có : \(DC=BC-BD=5-\frac{15}{7}=\frac{20}{7}\)cm
Áp dụng định lí Py ta go cho tam giác vuông tại D ta được :
\(AD^2+DC^2=AC^2\Rightarrow AD^2=AC^2-DC^2=16-\frac{400}{49}\)
\(\Rightarrow AD^2=\frac{384}{49}\Rightarrow AD=\frac{8\sqrt{6}}{7}\)xem sai ở đâu hộ mình nhé, chứ nếu theo hệ thức lượng thì như này
*\(AD.BC=AB.AC\Rightarrow AD=\frac{12}{5}\)*
d, \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.3.4=6\)
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) Chứng minh rằng tam giác ABC và tam giác DEC đồng dạng.
b) Tính độ dài các đoạn thẳng BC, BD.
c) Tính độ dài AD.
d) Tính diện tích tam giác ABC và diện tích tứ giác ABDE.
Giải hộ mình với ạ
Cho ABC vuông tại A. Biết Ab=3cm, Ac= 4cm. Tia phân giác góc Bac Cắt Bc tại D. Từ D kẻ đường thẳng vuông góc với ac, đường thẳng này cắt ac tại e.
a, CMR tam giác ced đồng dạng tam giác cab
b. Tính DC
a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
b: BC=căn 3^2+4^2=5cm
Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DC=20/7cm
Cho tam giác ABC vuông tại A, có AB=3cm, AC=5cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.
a) Chứng minh rằng tam giác ABC đồng dạng với tam giác DEC.
b)Tính độ dài BC,BD.
c) Tính độ dài AD. Tính diện tích tam giác ABC và diện tích tứ giác ABDE