Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thanh Ngân
Xem chi tiết
Hưng Tạ Việt
Xem chi tiết
Hưng Tạ Việt
24 tháng 11 2016 lúc 20:02

rút gọn biểu thức sau A=x+(2x+y)-3x^2-[(x+3x-7x)+y]-2x^2

Moon
Xem chi tiết
Nguyễn Duy Hưng
Xem chi tiết
Pham Van Hung
23 tháng 11 2018 lúc 21:52

Gọi 2 số dương cần tìm là a và b

Ta có: \(\left(a+b\right).30=\left(a-b\right).120=16.ab\)

\(\left(a+b\right).30=\left(a-b\right).120\Rightarrow\frac{a+b}{a-b}=\frac{120}{30}=4\)

\(\Rightarrow a+b=4a-4b\Rightarrow b+4b=4a-a\Rightarrow5b=3a\Rightarrow a=\frac{5}{3}b\)

\(\left(a+b\right).30=16ab\)

\(\Rightarrow\left(\frac{5}{3}b+b\right).30=16.\frac{5}{3}b.b\)

\(\Rightarrow80b=\frac{80}{3}b^2\)

\(\Rightarrow80b\left(1-\frac{1}{3}b\right)=0\Rightarrow1-\frac{1}{3}b=0\left(b>0\right)\Rightarrow b=3\)

Tìm được \(a=\frac{5}{3}b=\frac{5}{3}.3=5\)

Vậy 2 số cần tìm là 5 và 3.

Nguyễn Phương
Xem chi tiết
bùi nguyên khải
Xem chi tiết
Xem chi tiết
Tiến_Về_Phía_Trước
3 tháng 12 2019 lúc 20:36

Có thể bạn ghi sai đề chỗ 210, là 21 thì đúng hơn đó.

Theo đề bài, ta có: \(\frac{x+y}{35}=\frac{x-y}{21}=\frac{xy}{12}.\)(1)

Theo tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x+y}{35}=\frac{x-y}{21}=\frac{x+y+\left(x-y\right)}{35+21}=\frac{2x}{56}=\frac{x}{28}\)

do đó: \(\frac{x}{28}=\frac{xy}{12}\Leftrightarrow\frac{x}{xy}=\frac{28}{12}\Leftrightarrow\frac{1}{y}=\frac{28}{12}=\frac{7}{3}\Leftrightarrow y=\frac{3}{7}\)

thay \(y=\frac{3}{7}\) vào (1), ta có:

\(\frac{x+\frac{3}{7}}{35}=\frac{x-\frac{3}{7}}{21}\Rightarrow21\left(x+\frac{3}{7}\right)=35\left(x-\frac{3}{7}\right)\)

                                        \(\Rightarrow21x+9=35x-15\)

                                        \(\Rightarrow35x-21x=9+15\)

                                        \(\Rightarrow x=\frac{24}{14}=\frac{12}{7}\)

Vậy \(\left(x;y\right)=\left(\frac{12}{7};\frac{3}{7}\right)\)

Học tốt nhé ^3^

Khách vãng lai đã xóa

Tiến_Về_Phía _Trước đề bài mình viết ở trên là đúng đó không sai đâu

Khách vãng lai đã xóa
Lương Thế Hòa
Xem chi tiết
Bibi Quỳnh
Xem chi tiết
Huỳnh Quang Sang
27 tháng 3 2020 lúc 19:28

2.Gọi hai số dương lần lượt là x và y

Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)

hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)

Mà \(BCNN\left(35,210,12\right)=420\)

=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)

=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)

+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)

=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)

=> \(xy=7k\cdot5k=35k^2\)

=> \(35k^2=35\)

=> \(k^2=1\)

=> k = 1(loại âm vì đề bài cho 2 số dương)

Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)

\(\frac{y}{5}=1\)=> \(y=5\)

Vậy x = 7,y = 5

Khách vãng lai đã xóa
Nguyễn Linh Chi
27 tháng 3 2020 lúc 10:46

1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
Nguyễn Thảo Vân
9 tháng 2 2022 lúc 0:07
Tại sao 35k^2=35. Mà 35 ở đâu
Khách vãng lai đã xóa