Chứng tỏ rằng: \(\frac{12n+1}{30n+1}\)là phân số tối giản
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> phân số 12n + 1/30n + 2 là phân số tối giản
Bài giải :
Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> Phân số 12n + 1/30n + 2 là phân số tối giản
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d là ƯC(12n+1,30n+2). Ta có :
( 12n + 1 ) d => 5.( 12n + 1) d hay ( 30n + 5 ) d
( 30n + 2 ) d => 2 . ( 30n + 2 ) d hay ( 30n + 4 ) d
=> ( 30n + 5 ) - ( 30n + 4 ) = 1
=> d = 1
Vậy : là phân số tối giản
Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}
Gọi ƯCLN(12n + 1; 30n + 2) là d
=> \(12n+1⋮d\) => \(5\left(12n+1\right)⋮d\) => \(60n+5⋮d\)
\(30n+2⋮d\) \(2\left(30n+2\right)⋮d\) \(60n+4⋮d\)
=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy \(\frac{12n+1}{30n+2}\)tối giản
Gọi \(ƯCLN\left(12n+1;30n+2\right)\)là \(d\left(d\in N^∗\right)\)
Ta có :
\(12n+1⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\left(1\right)\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Nên \(12n+1;30n+2\)là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{12n+1}{30n+2}\)là p/s tối giản \(\left(đpcm\right)\)
chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=> 30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
chứng tỏ rằng 12n+1/30n+1 là phân số tối giản
Gọi d là ƯCNN(12n+1; 30n+1) là d. Ta có:
12n+1 chia hết cho d=>60n+5 chia hết cho d
30n+1 chia hết cho d=>60n+2 chia hết cho d
=>3 chia hết cho d
=> d thuộc ước của 3
d không thể bằng 3 vì 12 chia hết cho 3=>12n chia hết cho 3=>12n+1 chia 3 dư 1
=>d=1
=>\(\frac{12n+1}{30n+1}\)là phân số tối giản
Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
đặt (12n+1,30n+2)=d
=>12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
=>30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
ta có : 5*(12n+1)-2*(30n+2) chia hết cho d
= 1 chia hết cho d
=> d=1
=>(12n+1,30n+2)=1
=>đpcm
gọi d là ucln(12n+1;30n+2)
ta có : 12n+1 chia hết d
⇒60n + 5⋮d (1)
mà 30n+2⋮ d
⇒60n + 4 ⋮ d (2)
từ (1) và (2) ta có:
⇒60n+5 -(60n+4)⋮d
⇒60n+5-60n-4⋮d
⇒1⋮d⇒d=1
vì ucln(12n+1;30n+2)=1
⇒12n+1/30n+2 là phân số tối giản
vậy 12n+1/30n+2 là phân số tối giản
Gọi d là UCLN của 12n+1 và 30n+2
Vậy 12n+1 và 30n+2 chia hết cho d
hay: 60n +5 và 60n+4 chia hết cho d
nên: (60n + 5) - (60n+4) = 1 chia hết do d. Vậy d lớn nhất bằng 1
hay 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
Kết luận: \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Ta có:\(\frac{12n+1}{30n+2}\)
\(\Leftrightarrow\frac{12.n+1}{30.n+2}=\frac{12+1.n}{30+2.n}=\frac{13.n}{32.n}\)
\(\Rightarrow\frac{12n+1}{30n+2}\)tối giản vì \(\frac{13.n}{32.n}=\frac{13}{32}.n\)
\(\frac{13}{32}\) là phân số tối giản nên \(\frac{13}{32}.n\)là tối giản.
\(\Rightarrow\frac{13.n}{32.n}=\frac{12n+1}{30n+2}=\)Phân số tối giản
Đs:
Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :
\(12n+1⋮d\)và \(30n+2⋮d\)
\(\Leftrightarrow5\left(12n+1\right)⋮d\)và \(2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5⋮d\)và \(60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì d = 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
chứng tỏ rằng :\(\frac{12n+1}{30n+2}\)là phân số tối giản (n thuộc n)
Gọi d là UCLN của 12n +1/ 30n+2
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=>(60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> giả sử đầu bài đúng
=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)
Gọi d là ƯC(12n + 1 ; 30n + 2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_
Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản
Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản
gọi d là ƯCLN(12n+1;30n+2).theo bài ra ta có
12n+1 chia hết cho d =>60n+5 chia hết cho d
30n+2 chia hết cho d =>60n+4 chia hết cho d
=>60n+5-(60n+4)=1 chia hết cho d =>d=1
=>\(\frac{12n+1}{30n+2}\)là phân số tối giản
=>đpcm
Gọi ƯCLN(12n+1;30n+2)=d
Ta có: 12n+1 chia hết cho d; 30n+2 chia hết cho d
=> 5.(12n+1) - 2.(30n+2) chia hết cho d
=> 60n+5-60n+4 chia hết cho d
=> 1 chia hết cho d
=>d=1
=> ƯCLN(12n+1;30n+2)=1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản