Một số chính phương có chữ số hàng chục lẻ. Tìm chữ số hàng đơn vị?
Một số chính phương có chữ số hàng chục là số lẻ. Tìm chữ số hàng đơn vị.
Gọi n2 = (10a + b)2 = 10.(10a2 + 2ab) + b2 nên chữ số hàng đơn vị cần tìm là chữ số tận cùng của b2
Theo đề bài , chữ số hàng chục của n2 là chữ số lẻ nên chữ số hàng chục của b2 phải lẻ
Xét các giá trị của b từ 0 đến 9 thì chỉ có b2 = 16, b2 = 36 có chữ số hàng chục là chữ số lẻ, chúng đều tận cùng bằng 6
Vậy : n2 có chữ số hàng đơn vị là 6
chứng minh rằng tổng hai số chính phương lẻ ko là số chính phương
chứng minh rằng một số chính phương có chữ số tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ
1 số chính phương có chữ số hàng chục bằng 5 . tìm chữ sô hàng đơn vị
chứng minh rằng: nếu một số chính phương có chữ số hàng chục là lẻ thì chữ số đơn vị là 6
Lời giải:
Gọi phần tận cùng của scp là $\overline{bc}$ với $b,c$ là số tự nhiên có 1 chữ số. $b$ lẻ nên $b=2k+1$ với $k$ tự nhiên.
Vì scp chia $4$ có dư $0$ hoặc $1$ nên $\overline{bc}$ chia $4$ dư $0$ hoặc $1$
$\Rightarrow 10b+c\equiv 0,1\pmod 4$
$\Rightarrow 10(2k+1)+c\equiv 0,1\pmod 4$
$\Rightarrow c+10\equiv 0,1\pmod 4$
$\Rightarrow c\equiv 2,3\pmod 4(1)$
Mà $c$ có 1 chữ số nên $c=2,3,6,7$ (1)
Lại có:
SCP chia 5 dư $0,1,4$
$\Rightarrow \overline{bc}\equiv 0,1,4\pmod 5$
$\Rightarrow 10b+c=10(2k+1)+c=c+10\equiv 0,1,4\pmod 5$
$\Rightarrow c\equiv 0,1,4\pmod 5$
$\Rightarrow c=0,1,4,6$ (2)
Từ $(1); (2)\Rightarrow c=6$
Một số chính phương có chữ số hàng chục là 5. Tìm chữ số hàng đơn vị.
bài không sai đâu vì số chính phương không phải chỉ là sốc có 2 chữ số mà có nhiều hơn và 11..155..56(với n chữ số 1 và n-1 chữ số 5)(với n thuộc N) thì số luôn là số chính phương
Một số chính phương có chữ số hàng chục là 5. Tìm chữ số hàng đơn vị
bạn xem lại đề nha, số chính phương có 2 chữ số ko bao giờ có chữ số hàng chục là 5
Trả lời
làm gì có số chĩnh phương có chữ số hàng chục là 5 . bn xem lại đề đi
chúc bn học tốt!
tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị, ta vẫn được một số chính phương
Gọi số chính phương cần tìm là abcd=n2(n thuộc N)
Ta có: n+1 b+3 c+5 d+3 = k2(k thuộc N; k>n)
hay abcd+1353==k2
=>abcd=3136
Vậy số cần tìm là 3136
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn , thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị , ta vẫn được một số chính phương.
vào chữ số hàng trăm , thêm 5 đơn vị vào chữ số hàng chục , thêm 3 đơn vị vào chữ số hàng đơn vị thì ta vẫn được một số chính phương
Toán lớp 8 Số chính phương
Trần thị Loan 15/03/2015 lúc 23:50
Báo cáo sai phạm
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn , thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị , ta vẫn được một số chính phương.
Tìm tất cả các số chính phương gồm 4 chữ số biết rằng khi thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vị vào chữ số hàng đơn vị ta vẫn được một số chính phương.
tìm tất cả các số chính phương gồm 4 chữ số , biết rằng khi ta thêm 1 đơn vị vào chữ số hàng nghìn , thêm 3 đơn vị vào chữ số hàng trăm , thêm 5 đơn vị vào chữ số hàng chục , thêm 3 đơn vị vào chữ số hàng đơn vị thì ta vẫn được một số chính phương
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136