Tìm các số nguyên a,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Biết \(\sqrt{5}\)là số vô tỉ. Hãy tìm các số nguyên a,b thỏa mãn :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Tìm các số nguyên a,b thỏa mãn:
\(\frac{2}{a+b\sqrt{5}}\)- \(\frac{3}{a-b\sqrt{5}}\)= - 9 - \(20\sqrt{5}\)
Tìm các số a,b, nguyên thỏa mãn: \(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
<=> \(\frac{5\left(a-b\sqrt{2}\right)}{a^2-2b^2}-\frac{4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\) trục căn thức
<=> \(\frac{5a}{a^2-2b^2}-\frac{5b\sqrt{2}}{a^2-2b^2}-\frac{4a}{a^2-2b^2}-\frac{4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=3\)
Vì a; b nguyên => \(\hept{\begin{cases}\frac{5a}{a^2-2b^2}-\frac{4a}{a^2-2b^2}=3\\-\frac{5b\sqrt{2}}{a^2-2b^2}-\frac{4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=0\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{9b}{a^2-2b^2}=18\end{cases}}\)<=> \(\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{b}{a^2-2b^2}=2\end{cases}}\)
Với b = 0 => loại
Với b khác 0:
=> \(\frac{a}{b}=\frac{3}{2}\Leftrightarrow a=\frac{3}{2}b\)
=> \(\frac{b}{\frac{9}{4}b^2-2b^2}=2\)=> b = 2 => a = 3 thử lại thỏa mãn
Vậy a = 3 và b = 2.
\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)
\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)
-Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)
Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\inℚ\Rightarrow\sqrt{2}\inℚ\)=> Vô lý vì \(\sqrt{2}\)là số vô tỷ
-Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}\Rightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=2\end{cases}}\Leftrightarrow a=\frac{3}{2}b}\)
Thay a=\(\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)
ta có \(3\cdot\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)
Ta có b=0 (loại), b=2 (tm) => a=3
Vậy b=2; a=3
1Tìm các số nguyên a,b thõa mãn \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
2 tím số nguyên m sao cho \(\sqrt{m^2+m+1}\) là số nguyên
Biết \(\sqrt{5}\)là số vô tỉ hãy tìm các giá trị của a ,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Cảm ơn đã đọc và làm ơn giải giùm tui
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=\frac{2\left(a-b\sqrt{5}\right)-3\left(a+b\sqrt{5}\right)}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}\)\(=\frac{-a-5b\sqrt{5}}{a^2-5b^2}=\frac{-a}{a^2-5b^2}+\frac{-5b\sqrt{5}}{a^2-5b^2}\).
Suy ra:
\(\hept{\begin{cases}\frac{-a}{a^2-5b^2}=-9\\-\frac{5b}{a^2-5b^2}=-20\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{9}{4}\\\frac{a}{a^2-5b^2}=-9\end{cases}}\)
\(\frac{a}{b}=\frac{9}{4}\Leftrightarrow\frac{a}{9}=\frac{b}{4}=k\)\(\Rightarrow\hept{\begin{cases}a=9k\\b=4k\end{cases}}\).
Suy ra \(\frac{a}{a^2-5b^2}=\frac{9k}{81k^2-5.16k^2}=\frac{9}{k}=-9\).
Suy ra \(k=-1\).
Vậy \(\hept{\begin{cases}a=9k\\b=4k\end{cases}\Leftrightarrow\hept{\begin{cases}a=-9\\b=-4\end{cases}}}\).
bạn thử quy đồng mẫu của chúng lên xem , vế trái bạn áp dụng hằng đẳng thức số 3 ạ !
tìm số nguyên a,b thỏa mãn \(\frac{2}{a+b\sqrt{5}}\)-\(\frac{3}{a-b\sqrt{5}}\)=\(-9-20\sqrt{5}\)
làm hộ nha các bạn .ai giải nhanh và chính xác nhất ,mk đánh đúng cho.
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Biết \(\sqrt{5}\in R\)
tìm \(a\in Z\) ; \(b\in Z\) thỏa mãn:
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
tìm số hữu tỉ a,b thỏa mãn \(\frac{3}{a+b\sqrt{3}}-\frac{2}{a-b\sqrt{3}=7-20\sqrt{3}}\)có giá trị nguyên
sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ