Tìm các số nguyên a,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Biết \(\sqrt{5}\)là số vô tỉ. Hãy tìm các số nguyên a,b thỏa mãn :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Tìm các số nguyên a,b thỏa mãn:
\(\frac{2}{a+b\sqrt{5}}\)- \(\frac{3}{a-b\sqrt{5}}\)= - 9 - \(20\sqrt{5}\)
Tìm các số a,b, nguyên thỏa mãn: \(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
<=> \(\frac{5\left(a-b\sqrt{2}\right)}{a^2-2b^2}-\frac{4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\) trục căn thức
<=> \(\frac{5a}{a^2-2b^2}-\frac{5b\sqrt{2}}{a^2-2b^2}-\frac{4a}{a^2-2b^2}-\frac{4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=3\)
Vì a; b nguyên => \(\hept{\begin{cases}\frac{5a}{a^2-2b^2}-\frac{4a}{a^2-2b^2}=3\\-\frac{5b\sqrt{2}}{a^2-2b^2}-\frac{4b\sqrt{2}}{a^2-2b^2}+18\sqrt{2}=0\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{9b}{a^2-2b^2}=18\end{cases}}\)<=> \(\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{b}{a^2-2b^2}=2\end{cases}}\)
Với b = 0 => loại
Với b khác 0:
=> \(\frac{a}{b}=\frac{3}{2}\Leftrightarrow a=\frac{3}{2}b\)
=> \(\frac{b}{\frac{9}{4}b^2-2b^2}=2\)=> b = 2 => a = 3 thử lại thỏa mãn
Vậy a = 3 và b = 2.
\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)
\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)
-Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)
Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\inℚ\Rightarrow\sqrt{2}\inℚ\)=> Vô lý vì \(\sqrt{2}\)là số vô tỷ
-Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}\Rightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=2\end{cases}}\Leftrightarrow a=\frac{3}{2}b}\)
Thay a=\(\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)
ta có \(3\cdot\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)
Ta có b=0 (loại), b=2 (tm) => a=3
Vậy b=2; a=3
1Tìm các số nguyên a,b thõa mãn \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
2 tím số nguyên m sao cho \(\sqrt{m^2+m+1}\) là số nguyên
Biết \(\sqrt{5}\)là số vô tỉ hãy tìm các giá trị của a ,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Cảm ơn đã đọc và làm ơn giải giùm tui
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=\frac{2\left(a-b\sqrt{5}\right)-3\left(a+b\sqrt{5}\right)}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}\)\(=\frac{-a-5b\sqrt{5}}{a^2-5b^2}=\frac{-a}{a^2-5b^2}+\frac{-5b\sqrt{5}}{a^2-5b^2}\).
Suy ra:
\(\hept{\begin{cases}\frac{-a}{a^2-5b^2}=-9\\-\frac{5b}{a^2-5b^2}=-20\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{9}{4}\\\frac{a}{a^2-5b^2}=-9\end{cases}}\)
\(\frac{a}{b}=\frac{9}{4}\Leftrightarrow\frac{a}{9}=\frac{b}{4}=k\)\(\Rightarrow\hept{\begin{cases}a=9k\\b=4k\end{cases}}\).
Suy ra \(\frac{a}{a^2-5b^2}=\frac{9k}{81k^2-5.16k^2}=\frac{9}{k}=-9\).
Suy ra \(k=-1\).
Vậy \(\hept{\begin{cases}a=9k\\b=4k\end{cases}\Leftrightarrow\hept{\begin{cases}a=-9\\b=-4\end{cases}}}\).
bạn thử quy đồng mẫu của chúng lên xem , vế trái bạn áp dụng hằng đẳng thức số 3 ạ !
tìm số nguyên a,b thỏa mãn \(\frac{2}{a+b\sqrt{5}}\)-\(\frac{3}{a-b\sqrt{5}}\)=\(-9-20\sqrt{5}\)
làm hộ nha các bạn .ai giải nhanh và chính xác nhất ,mk đánh đúng cho.
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Biết \(\sqrt{5}\in R\)
tìm \(a\in Z\) ; \(b\in Z\) thỏa mãn:
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = \(\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}\)
Bài 2: Tìm các số thực \(x\geq 0\) sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn \(\sqrt{x}+\sqrt{y-2}=2\) và \(\sqrt{y+1}+\sqrt{z-3}=3\) và \(\sqrt{z+5}+\sqrt{x+3}=5\)
Bài 4: CMR \(2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3\)
Bài 5: CMR \(\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2 \)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Ta có \(\sqrt{x}+\sqrt{y-2}=2\)=> \(\left(\sqrt{x}-1\right)+\left(\sqrt{y-2}-1\right)=0\)
=> \(\frac{x-1}{\sqrt{x}+1}+\frac{y-3}{\sqrt{y-2}+1}=0\left(1\right)\)
=>Tương tự với các PT còn lại
\(\frac{y-3}{\sqrt{y+1}+2}+\frac{z-4}{\sqrt{z-3}+1}=0\left(2\right)\)
\(\frac{z-4}{\sqrt{z+5}+3}+\frac{x-1}{\sqrt{x+3}+2}=0\left(3\right)\)
Ta thấy \(x=1;y=3;z=4\)là nghiệm của 3 PT
Với \(x\ne1;y\ne3;z\ne4\)
Theo nguyên lí diricle ta luôn có :
trong 3 số x-1;y-3;z-4 luôn có 2 số cùng dấu
=> 2 trong 3 PT trên vô nghiệm
Vậy x=1;y=3;z=4