\(\hept{\begin{cases}a,b,c>0\\a+b+c\ge abc\end{cases}}.CM:a^2+b^2+c^2\ge\sqrt{3}abc\)
Cho \(\hept{\begin{cases}a,b,c>0\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\sqrt{abc}\end{cases}}\)
CMR: \(abc\ge\sqrt{3\left(a+b+c\right)}\)
\(\hept{\begin{cases}a,b,c>0\\abc=1\end{cases}.CMR:}1+\frac{3}{a+b+c}\ge\frac{6}{ab+bc+ca}\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\),xyz=1
Cần CM: \(1+\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{6}{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}\)
\(\Leftrightarrow1+\frac{3}{xy+yz+zx}\ge\frac{6}{x+y+z}\)
Thật vậy \(1+\frac{3}{xy+yz+zx}\ge1+\frac{9}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{9}{x+y+z}}=\frac{6}{x+y+z}\)(đpcm)
Dấu "=" xảy ra khi a=b=c=1
1. cho \(-1\le a,b,c\le2\) và a+b+c=0. CMR \(a^2+b^2+c^2\le6\)
2. cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)cmr hoán vị của \(a\sqrt[3]{1+b-c}\ge\frac{3\sqrt{17}}{2}\)
3. \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)cmr: hoán vị của\(\frac{a}{a^2+1}\le\frac{9}{10}\)
4. \(\hept{\begin{cases}a,b,c>0\\a+b+c\le\frac{3}{2}\end{cases}}\)cmr: hoán vị của \(a\sqrt[3]{1+b-c}\le1\)
1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm
lười quá khỏi nghĩ đưa link
| Inequalities (ko dịch dc thì pm)
moi nguoi oi giup em may cau nay voi
1) Cho \(\hept{\begin{cases}a,b,c,d\ge0\\a+b+c+d\le3\end{cases}}\)tim max \(P=2a+3b^2+4b^3+5b^4\)
2) Cho \(\hept{\begin{cases}a,b,c\ge0\\a+b+c=3\end{cases}}\)tim min \(P=\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3\)
3) Cho \(\hept{\begin{cases}a,b\ge0;0\le c\le1\\a^2+b^2+c^2=3\end{cases}}\) tim max,min \(P=ab+bc+ca+3\left(a+b+c\right)\)
4) Cho \(\hept{\begin{cases}a,b,c\ge0\\a+b+c=3\end{cases}}\)tim max \(P=a\sqrt{b}+b\sqrt{c}+c\sqrt{a}-\sqrt{abc}\)
5) Cho \(\hept{\begin{cases}a,b\ge0;0\le c\le1\\a+b+c=3\end{cases}}\)tim max, min \(P=a^2+b^2+c^2+abc\)
em cam on nhieu
\(\hept{\begin{cases}a,b,c>0\\a^2+b^2+c^2=3\end{cases}}\)
Chung minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9}{a+b+c}\)
k đúng cho mk đi rùi mk giải cho
tiếng việt lớp 1 ???????????
cái này là tiếng việt lớp 1 ư
\(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=abc\end{cases}}\)
CMR\(A=\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}+\frac{1}{\sqrt{1+c^2}}\le\frac{3}{2}\)
Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0
đk <=> 1/x + 1/y + 1/z = 1/(xyz)
<=> xy + yz + zx = 1
A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)]
Ta có:
1 + x² = x² + xy + yz + zx = (x+z)(x+y)
=> √[yz/(1+x²)] = √[y/(x+y)] . √[z/(x+z)]
≤ 1/2 . [y/(x+y) + z/(x+z)] (1)
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n))
Tương tự:
√[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2)
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3)
Cộng vế của (1),(2) và (3) lại ta được:
A ≤ 1/2 . 3 = 3/2
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3
bạn trả lời lại bằng phần mềm của OLM đươc ko? Thế này hơi khó hiểu bạn ạ! Thanks
Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0
đk <=> 1/x + 1/y + 1/z = 1/(xyz)
<=> xy + yz + zx = 1 A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)]
Ta có: 1 + x² = x² + xy + yz + zx = (x+z)(x+y)
=> √[yz/(1+x²)] = √[y/(x+y)]
. √[z/(x+z)] ≤ 1/2 . [y/(x+y) + z/(x+z)] (1)
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n))
Tương tự: √[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2)
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3)
Cộng vế của (1),(2) và (3) lại ta được: A ≤ 1/2 . 3 = 3/2
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3
1, Cho \(\hept{\begin{cases}a,b>0\\a^2+b^2=1\end{cases}.}\)Tìm min A= \(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)
2, Cho \(\hept{\begin{cases}a^2+2b^2\le3c^2\\a,b,c>0\end{cases}}\).Chứng minh : \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)
\(P\left(x\right)=x^2+bx+c=\left(x+\frac{b}{2}\right)^2-\frac{b^2}{4}+c\ge c-\frac{b^2}{4}\)
Có \(P\left(x\right)_{min}=-1\) tại x=2 => \(\hept{\begin{cases}2+\frac{b}{2}=0\\c-\frac{b^2}{4}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-4\\c=3\end{cases}}\)
lớp 1 ????
mà đây cũng đâu phải câu hỏi đâu ??
Đây có phải là câu hỏi đâu bạn
Phùng Minh Quân làm đúng rồi CHÚC MỪNG
Cho\(\hept{\begin{cases}a,b,c>0\\a^2+b^2+c^2=1\end{cases}}\) Chứng minh rằng :\(\frac{a}{b^2+c^2}\) +\(\frac{b}{c^2+a^2}\) +\(\frac{c}{a^2+b^2}\) \(\ge\) \(\frac{3\sqrt{3}}{2}\)
C.m BĐT phụ \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)