Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệp Song Thiên
Xem chi tiết
Long nguyen van
Xem chi tiết
Pham Quoc Cuong
3 tháng 9 2018 lúc 21:12

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\),xyz=1  

Cần CM: \(1+\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{6}{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}\) 

\(\Leftrightarrow1+\frac{3}{xy+yz+zx}\ge\frac{6}{x+y+z}\) 

Thật vậy \(1+\frac{3}{xy+yz+zx}\ge1+\frac{9}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{9}{x+y+z}}=\frac{6}{x+y+z}\)(đpcm) 

Dấu "=" xảy ra khi a=b=c=1

Nguyễn Duy Long
Xem chi tiết
Witch Rose
20 tháng 8 2017 lúc 14:05

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

Witch Rose
20 tháng 8 2017 lúc 14:19

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

Thắng Nguyễn
20 tháng 8 2017 lúc 22:33

lười quá khỏi nghĩ đưa link

| Inequalities (ko dịch dc thì pm)

Tran Anh Hung
Xem chi tiết
Nyatmax
Xem chi tiết
gunny
27 tháng 11 2019 lúc 20:10

k đúng cho mk đi rùi mk giải cho

Khách vãng lai đã xóa
Hắc_Thiên_Tỉ
27 tháng 11 2019 lúc 20:12

tiếng việt lớp 1 ???????????

Khách vãng lai đã xóa

cái này là tiếng việt lớp 1 ư

Khách vãng lai đã xóa
Anna Vũ
Xem chi tiết
Yim Yim
4 tháng 7 2018 lúc 9:51

  Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0 
đk <=> 1/x + 1/y + 1/z = 1/(xyz) 
<=> xy + yz + zx = 1 
A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)] 
Ta có: 
1 + x² = x² + xy + yz + zx = (x+z)(x+y) 
=> √[yz/(1+x²)] = √[y/(x+y)] . √[z/(x+z)] 
≤ 1/2 . [y/(x+y) + z/(x+z)] (1) 
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n)) 
Tương tự: 
√[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2) 
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3) 
Cộng vế của (1),(2) và (3) lại ta được: 
A ≤ 1/2 . 3 = 3/2 
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3

Anna Vũ
7 tháng 7 2018 lúc 16:24

bạn trả lời lại bằng phần mềm của OLM đươc ko? Thế này hơi khó hiểu bạn ạ! Thanks

  Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0 

đk <=> 1/x + 1/y + 1/z = 1/(xyz)

  <=> xy + yz + zx = 1  A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)]

  Ta có:  1 + x² = x² + xy + yz + zx = (x+z)(x+y)

  => √[yz/(1+x²)] = √[y/(x+y)]

. √[z/(x+z)]  ≤ 1/2 . [y/(x+y) + z/(x+z)] (1)

  (áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n))

  Tương tự:  √[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2)

  √[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3)

  Cộng vế của (1),(2) và (3) lại ta được:  A ≤ 1/2 . 3 = 3/2

  Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3

Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Thiều Công Thành
9 tháng 9 2017 lúc 22:51

1,

\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)

\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)

lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)

\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

\(\Rightarrow A\ge4+3\sqrt{2}\)

Nguyễn Thiều Công Thành
9 tháng 9 2017 lúc 22:56

câu 2

ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)

\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)

Phùng Minh Quân
Xem chi tiết
fhusaaaahusfaaaaaaaaaaa
14 tháng 12 2019 lúc 19:53

lớp 1 ????

mà đây cũng đâu phải câu hỏi đâu ??

Khách vãng lai đã xóa
 Bùi Bảo Anh
14 tháng 12 2019 lúc 19:55

Đây có phải là câu hỏi đâu bạn

Khách vãng lai đã xóa
fhusaaaahusfaaaaaaaaaaa
14 tháng 12 2019 lúc 19:57

Phùng Minh Quân làm đúng rồi  CHÚC MỪNG 

Khách vãng lai đã xóa
Pham Thuy Linh
Xem chi tiết
Thắng Nguyễn
28 tháng 12 2017 lúc 18:00

C.m BĐT phụ \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)