Cho a ,b,c là các số dương chứng minh
√a+√b+√c >√(a+b+c)
Giúp mình với:(((
Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
giúp mình vứi
\(\Leftrightarrow a^3+b^3+abc-a^2b-ab^2-abc\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(đúng)
Cho a,b,c là các số thực dương thỏa hệ thức: \(\dfrac{a}{b}=\dfrac{b}{c}\). Chứng minh: \(\dfrac{a}{c}=\dfrac{2a^2+5b^2}{2b^2+5c^2}\)
Ai giúp mình bài này với ạ!!!
Cho a,b,c,d là các số dương. Chứng minh rằng: \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
Giúp mình với Toán 8!!!!!!!!!!
Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)
Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)
\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)
Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)
1.Cho biểu thức:A=(a^2015+b^2015+c^2015)-(a^2011+b^2011+c^2011) với a,b,c là các số nguyên dương. Chứng minh rằng A chia hết cho 30
2. Tìm tất cả các số tự nhiên n sao cho n²-14n-256 là một số chính phương.
giúp mình với các bạn nhé!
Cho a,b,c là các số nguyên dương thỏa mãn1/a -1/b =1/c.
Gọi d là ước chung lớn nhất của a,b,c. Chứng minh tích a.b.c.d là một số chính phương.
Các thánh toán ơi, nhảy vô giúp mình với.
Cho M=(a/b+c)+(b/a+c)+(c/a+b), a,b,c là các số nguyên dương.
a) Chứng minh: M<1
b) M có phải số nguyên không?
MÌNH CẦN CÂU A GẤP, LÀM ĐC CÂU B THÌ CÀNG TỐT, HỨA SẼ TICK AI ĐÚNG!! GIÚP VỚI :((
Cho M=(a/b+c)+(b/a+c)+(c/a+b), a,b,c là các số nguyên dương.
a) Chứng minh: M<1
b) M có phải số nguyên không?
MÌNH CẦN CÂU A GẤP, LÀM ĐC CÂU B THÌ CÀNG TỐT, HỨA SẼ TICK AI ĐÚNG!! GIÚP VỚI :((
\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Vậy M>1 (1) (Đề sai )
b)\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)
\(\Rightarrow M< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=>M<2 (2)
+)Từ (1) và (2)
=>M không phải là ssoos nguyên
Chúc bạn học tốt
Cho các số thực dương a,b,c. Chứng minh rằng: \(\sqrt{\frac{a}{b+2c}}+\sqrt{\frac{b}{a+2c}}+2\sqrt{\frac{c}{a+b+c}}>2\).
Giúp mình với, mình đang cần gấp
1. chứng minh rằng với mọi số nguyên a,b,c,d , tích :
( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
2. chứng minh rằng số A = \(2^{2^{2n+1}}+3\) là hợp số với mọi số nguyên dương n
giúp mình nha
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
Ta có :
\(2^{2n+1}=\left(3-1\right)^{2n+1}=BS3-1=3k+2\)
do đó :
\(A=2^{3k+2}+3=4.\left(2^3\right)^k+3=4\left(7+1\right)^k+3=BS7+7=BS7\)
Mà A > 7, vậy A là hợp số
cho các số thực dương a,b,c thỏa mãn abc=1. chứng minh rằng a^3 +b^3+c^3+3>=4(a/b+c +b/c+a +c/a+b). giúp mình nhé
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)