tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{a=b-c}}+\sqrt{\dfrac{5}{b+c-a}}+\sqrt{\dfrac{79}{a+c-b}}\in N\ne1\)
CÁC BẠN GIÚP MÌNH NHÉ MÌNH CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có\(\Sigma\left(b+c\right)\sqrt[k]{\dfrac{bc+1}{a^2+1}}\ge6\)
cho 3 số thực dương a,b,c thỏa mãn a+b+c=2
chứng minh a/( a+ √{2a+bc}) + b/( b+ √{2b+ac}) + c/( c+ √{2c+ab}) ≤ 1
giúp mình với mấy bạn :_33
cho các số thực dương a,b,c thoả mãn a+b+c=1.Chứng minh
\(\dfrac{a}{a+b^2}+\dfrac{b}{b+c^2}+\dfrac{c}{c+a^2}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
cho a , b là các số dương . chứng minh 1/(a+b)<= 1/4 nhân (1/a + 1/b) ( nhỏ hơn hoặc bằng nha mn)
Cho a,b,c dương .Chứng minh:
\(\sum\dfrac{a^6}{b^2+c^2}\ge\dfrac{abc\left(a+b+c\right)}{2}\)
Cho các số dương a,b,c .Chứng minh rằng bất đẳng thức
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+d}}+\sqrt{\dfrac{c}{d+a}}+\sqrt{\dfrac{d}{a+b}}\)\(\ge2\)
Cho a,b,c là các số dương, a+b+c=1
Chứng minh \(\sqrt{\frac{a}{1-a}}\)+\(\sqrt{\frac{b}{1-b}}\)+\(\sqrt{\frac{c}{1-c}}\)>2
Cho a, b, c là các số thực; x, y, z là các số thực dương. Chứng minh : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)