Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bạch thục quyên
Xem chi tiết
Lê Minh Anh
7 tháng 10 2017 lúc 21:53

Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:

\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)

\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)

\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)

\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)

\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)

Ut02_huong
Xem chi tiết
jhfdvbjj
Xem chi tiết
❤  Hoa ❤
13 tháng 12 2018 lúc 20:51

\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)

\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)

\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)

❤  Hoa ❤
13 tháng 12 2018 lúc 20:56

\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)

\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)

nguyễn thảo nhi
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 9 2019 lúc 15:57

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(y-x\right)\left(x-z\right)\left(x+z\right)-z^2\left(x-z\right)\left(y-x\right)\left(y+x\right)\)

\(=\left(y-x\right)\left(x-z\right)\left(xy^2+y^2z-z^2y-z^2x\right)\)

Xet \(xy^2+y^2z-z^2y-z^2x=x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)=\left(y-z\right)\left(xy+yz+zx\right)\)

Vay \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)=\left(y-x\right)\left(x-z\right)\left(y-z\right)\left(xy+yz+zx\right)\)

Nguyễn Văn Tuấn Anh
24 tháng 9 2019 lúc 16:01

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^3x^2+z^2x^3\)

\(=y^3\left(x^2-z^2\right)-y^2\left(x^3-z^3\right)+z^2x^2\left(x-z\right)\)

\(=y^3\left(x+z\right)\left(x-z\right)-y^2\left(x-z\right)\left(x^2+xz+z^2\right)+z^2x^2\left(x-z\right)\)

\(=\left(x-z\right)\left(xy^3+y^3z-y^2x^2-y^2xz-y^2z^2+z^2x^2\right)\)

.................

Lê Minh Vũ
Xem chi tiết
ST
28 tháng 6 2018 lúc 10:29

1/ 

a, x2+36=12x

<=>x2-12x+36=0 

<=>(x-6)2=0

<=>x-6=0

<=>x=6

b, 5x(x-3)+3-x=0

<=>5x(x-3)-(x-3)=0

<=>(5x-1)(x-3)=0

<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)

2/ Sửa đề x2z2 = y2z2

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có 

\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)

Ut02_huong
Xem chi tiết
Huỳnh Kim Bích Ngọc
Xem chi tiết
Đinh Đức Hùng
14 tháng 8 2017 lúc 16:57

\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=-y^3-xy^2+x^2y+x^3-z^3-yz^2+y^2z+y^3-x^3-zx^2+z^2x+z^3\)

\(=-xy^2+x^2y-yz^2+y^2z-zx^2+z^2x\)

\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\)

Blue Frost
Xem chi tiết
Lê Công Đạt
16 tháng 8 2018 lúc 9:24

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

Đường Quỳnh Giang
2 tháng 9 2018 lúc 19:18

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)+z^2x^2\left(x-z\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(xy+yz+zx\right)\)

học tốt

Thanh Tu Nguyen
Xem chi tiết