tìm các số nguyên tố p,q sao cho p2-q2-1laf một số chính phương
Tìm tất cả số nguyên tố p lẻ sao cho 2p4 - p2 + 16 là số chính phương
Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương.
Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.
Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.
Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)
Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.
tìm p nguyên tố sao cho\(\frac{p+1}{2}\)và \(\frac{p2+1}{2}\)là số chính phương
\(\frac{p+1}{2}\)là số chính phương nên \(p+1\)phải chia hết cho 4.
Tương tự \(\frac{p^2+1}{2}\)là số chính phương nên \(p^2+1\)chia hết cho 4.
Do đó cả p và p2 đều chia 4 dư 3.
Đặt \(p=4k+3\)\(\left(k\in N\right)\)
\(\Rightarrow p^2=\left(4k+3\right)^2=16k^2+24k+9=4\left(4k^2+6k+2\right)+1\)chia 4 dư 1.
Do đó không thể tồn tại p để cả p và p2 chai cho 4 có cùng 1 số dư. Do đó không có p thỏa mãn.
Trần Thùy Dung sai rồi, thử 2 vẫn đúng :))
Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
p1=2
p2=3
p3=5
p4=7
p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố
đúng thì tk nha
Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4) (1)
Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số
Suy ra chúgn lần lượt là.........(1)
mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa
Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).
Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\)
Tìm 3 số nguyên tố lien tiep p , q , r sao cho
p2 + q2 + r2 đều là nguyên tố
p^2+q^2+r^2=3^2+5^2+7^2=83
k cho mình nha!
Tìm số nguyên tố \(p\) sao cho tổng các ước của \(p^4\)là một số chính phương?
Gợi ý:
Tổng các ước dương của p4p4 là : p4+p3+p2+p+1p4+p3+p2+p+1
Theo đề ra thì: p4+p3+p2+p+1=n2(n∈Np4+p3+p2+p+1=n2(n∈N
Để ý rằng: (2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1(2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1
Đến đây đơn giản rồi nhé !
___
NLT
k nha
a) Cho p, q là hai số nguyên tố lớn hơn 3. Chứng minh rằng; p2-q2⋮3
-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).
-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).
*\(p=3k+1;q=3h+2\).
\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)
-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:
\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).
-Vậy \(\left(p^2-q^2\right)⋮3\)
Tìm các số nguyên tố p,q sao cho \(p^2+pq+q^2\)là số chính phương
Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)
\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)
\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)
\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)
Xong chắc xét các TH với p,q là số nguyên tố
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America