Cho tam giác ABC nhọn nội tiếp (O) có H là trực tâm. M là điểm bất kì trên cung nhỏ BC. Gọi I, J lần lượt là hình chiếu của M trên AB, AC. Chứng minh I, J đi qua trung điểm của HM
Cho tam giác ABC nội tiếp đường tròn (O). M là một điểm trên cung BC không chứa A. Gọi. D, E, F lần lượt là hình chiếu của M trên BC, AC và AB
a) Chứng minh rằng D, E, F thẳng hàng.
b) Gọi I, J, K lần lượt là các điểm đối xứng của M qua D, E, F. Chứng minh rằng I, J, K cùng thuộc một đường thẳng và đường thẳng đó đi qua trực tâm H của tam giác ABC.
Cho tam giác nhọn nội tiếp đường tròn tâm . Trên cung nhỏ lấy điểm sao cho không là đường kính ( không trùng ). Gọi lần lượt là hình chiếu của điểm trên các đường thẳng . Chứng minh ba điểm thẳng hàng.
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB< AC).Các đường cao AD và CF của tam giác ABC cắt nhau tại H.
a) Chứng minh tứ giác BFHD nội tiếp
b) Gọi M là điểm bất kì trên cung nhỏ BC của đường tròn tâm O (M khác B,C) và N là điểm đối xứng của M qua BC .chứng minh tứ giác AHCN nội tiếp
c) Gọi I là giao điểm của AM và CH; J là giao điểm của AC và HN. Chứng minh góc AJI = góc ANC
d) Chứng minh rằng OA vuông góc với IJ
Cho tam giác ABC nhọn nội tiếp đường tròn (O) có trực tâm H, D là điểm trên cung nhỏ BC. Lấy điểm E sao cho ADCE là hình bình hành và K là trực tâm của tam giác ACE. Gọi P, Q lần lượt là hình chiếu của K trên BC và AB. Cmr PQ đi qua trung điểm của HK.
Em kiểm tra lại đề bài . Gọi P, Q là hình chiếu của K trên BC và gì nữa vậy?
Gọi N là giao điểm của PQ và AH, gọi M là giao điểm của AH với (O). Khi đó dễ thấy tam giác PHK cân. Do AH//KP nên tứ giác KPMN là hình thang.
Lại có BPKQ nội tiếp nên suy ra được \(\widehat{QBK}=\widehat{ABK}=\widehat{ AMK}=\widehat{QPK}\)nên tứ giác KPMN nội tiếp. Do đó KPMN là hình thang cân. Do đó \(\widehat{PMH}=\widehat{PHM}=\widehat{KNM}\)nên KN//HP.
Do vậy tứ giác HPKN là hình bình hành. Từ đó ta có điều phải chứng minh.
Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Trên cung nhỏ $BC$ lấy điểm $M$ sao cho $AM$ không là đường kính ($M$ không trùng $B, C$). Gọi $I, H, K$ lần lượt là hình chiếu của điểm $M$ trên các đường thẳng $BC, AB, AC$. Chứng minh ba điểm $H,I,K$ thẳng hàng.
mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy
cho tam gics ABC có ba góc nhọn, nội tiếp đường tròn tâm O (AB<AC). Các đường cao AD và CF của tam gics ABC cắt nhau tại H.
a) chứng minh tứ giác BFHD nội tiếp. Suy ra góc AHC= 180-ABC
b) gọi M là điểm bất kì trên cung nhỏ BC của đường tròn (O) (M khác B và C) và N là điểm đối xứng của M qua AC. Chứng minh tứ giác AHCN nội tiếp
c) gọi I là giao điểm của AM và HC: J là giao điểm của AC và HN. Chứng minh góc AJI= ANC
Cho tam giác ABC nhọn nối tiếp đường tròn tâm O. Trên cung nhỏ BC lấy điểm M sao cho AM không là đường kính (M không trùng B, C). Gọi I, H, K lần lượt là hình chiếu của điểm M trên các đường thẳng BC, AB, AC. Chứng minh ba điểm H, I, K thẳng hàng
góc MKC=góc MIC=90 độ
=>MCKI nội tiếp
=>góc MIK+góc MCK=180 độ
góc MIB+góc MHB=180 độ
=>MIBH nội tiếp
=>góc MIH=góc MBH
góc MIH+góc MIK
=180 độ-góc MCK+góc MBH
=180 độ
=>H,I,K thẳng hàng
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
c) Gọi N là giao điểm của AH với đường tròn (O) (N khác A). Gọi D là điểm bất kì trên cung nhỏ NC của đường tròn tâm (O) (D khác N và C). Gọi E là điểm đối xứng với D qua AC, K là giao điểm của AC và HE. Chứng minh rằng ACH = ADK.
Ta có NHC = ABC (cùng phụ với HCB) (1)
Vì ABDC là tứ giác nội tiếp nên ABC = ADC (2)
Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra
∆ADC = ∆AEC (c.c.c) => ADC = AEC (3)
Tương tự ta có AEK = ADK
Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o
Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)
Cho tam giác ABC nhọn không cân có trực tâm H, M là trung điểm cạnh BC. Lấy P bất kì trên đoạn HM, gọi E và F lần lượt là hình chiếu của P lên AC và AB. Tiếp tuyến tại E và F của đường tròn (AEF) cắt nhau tại S. Chứng minh rằng SB = SC.
Vẽ đường tròn ngoại tiếp (O) của \(\Delta\)ABC. Tiếp tuyến tại B và C của (O) cắt nhau ở T.
Gọi HM cắt đường tròn (O) tại hai điểm K và D (K thuộc cung lớn BC), AH cắt (O) và (AEF) tại L và I (khác A).
Dễ chứng minh AD là đường kính của (O) và ^AKP = 900, suy ra K thuộc đường tròn (AEF)
Từ đó \(\Delta\)EKF ~ \(\Delta\)CKB (g.g). Dễ thấy ^IFE = ^IAE = ^LBC; ^IEF = ^IAF = ^LCB suy ra \(\Delta\)EIF ~ \(\Delta\)CLB
Do vậy \(\frac{KF}{KE}.\frac{IE}{IF}=\frac{KB}{KC}.\frac{LC}{LB}=\frac{KB}{KC}.\frac{DB}{DC}=\frac{KB}{KC}.\frac{DB}{BM}.\frac{CM}{DC}=\frac{KB}{KC}.\frac{KC}{KM}.\frac{KM}{KB}=1\)
Suy ra 2 tứ giác KFIE và KBLC điều hòa, dẫn đến K,I,S thẳng hàng và K,L,T thẳng hàng
Theo tính đồng dạng thì \(\Delta\)KIF ~ \(\Delta\)KLB và \(\Delta\)KFS ~ \(\Delta\)KBT kéo theo \(\Delta\)IKL ~ \(\Delta\)SKT (~\(\Delta\)FKB)
Vậy ST // IL, mà IL vuông góc với BC, T thuộc trung trực của BC nên S thuộc trung trực của BC hay SB = SC (đpcm).