Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ha bau
Xem chi tiết
Nguyễn Minh Quang
26 tháng 7 2021 lúc 17:31

ta có : 

\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)

nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)

\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)

b. tương tự ta có :

\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)

\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)

c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)

Khách vãng lai đã xóa
oOo Chảnh thì sao oOo
Xem chi tiết

mình nè

bạn gửi lời kết bạn nhé mình hết ượt rui ok 

Thiên thần của các vì sa...
18 tháng 6 2017 lúc 17:53

Cậu gửi lời mời kb nha.

LE NGUYEN HUNG
Xem chi tiết
Đen đủi mất cái nik
26 tháng 8 2017 lúc 7:49

Ta có

a3+b3+c3-3abc

=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

Nguyệt
15 tháng 8 2018 lúc 21:29

a3+b3+c3-3abc

=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a=b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

ღHàn Thiên Băng ღ
15 tháng 8 2018 lúc 21:39

a3 + b3 + c3 - 3abc

= [( a3 + b3 ) + c3 ] - 3abc

= [( a + b )3 + c3 + 3ab( a + b )] - 3abc

= [( a + b )3 + c3 ] + 3a2b + 3ab2 - 3abc

= ( a + b + c ) [( a + b )2 - c( a + b ) + c2 ] - 3ab( a + b + c )

= ( a + b + c ) ( a2 + 2ab + b2 - ac - bc + c2 - 3ab )

= ( a + b + c ) ( a2 + b2 + c2 - ab - bc - ac )

= 1/2( a + b + c ) ( 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac )

= 1/2( a + b + c ) [( a2 - 2ab + b2 ) + ( a2 - 2ac  + c2 ) + ( b2 - 2bc + c2 )]

= 1/2 ( a + b + c ) [( a - b )2 + ( a - c )2 + ( b - c )2]

Hok Tốt!!!

Thuy Nguyen
Xem chi tiết
Nguyễn Phú Thanh
20 tháng 9 lúc 17:07

a^3+b^3+c^3-3abc

=a^3 + b^3 + 3ba^2 + 3ab^2 + b^3 - 3ab(a+b) +c^3 _ 3abc

=(a+b)^3+c^3 -3ab(a+b+c)

=(a+b+c)(a^2+2ab+b^2-bc-ca+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ab-bc)

Me Mo Mi
Xem chi tiết
Nguyễn Như Nam
5 tháng 7 2016 lúc 13:40

a) \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x+1\right)=\left(x+1\right)^2\)    *Câu này có thể áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\)  cho nhanh*

b) \(a^3-b^3+c^3+3abc=\left(a^3-3a^2b+3ab^2-b^2\right)+3a^2b-3ab^2+c^3+3abc\)

\(=\left(a-b\right)^3+c^3+\left(3a^2b-3ab^2+3abc\right)\) 

\(=\left(a-b+c\right)\left[\left(a-b\right)^2-\left(a-b\right)c+c^2\right]+3ab\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(a^2-2ab+b^2-ac+bc+c^2+3ab\right)\)

\(=\left(a-b+c\right)\left(a^2+b^2+c^2-ac+bc+ab\right)\)

c) \(a^3-b^3-c^3-3abc=\left[a^3-3a^2b+3ab^2-b^3\right]+3a^2b-3ab^2-c^3-3abc\)

\(=\left[\left(a-b\right)^3-c^3\right]+3ab\left(a-b-c\right)=\left(a-b-c\right)\left[\left(a-b\right)^2+\left(a-b\right)c+c^2\right]+3ab\left(a-b-c\right)\)

\(=\left(a-b-c\right)\left[a^2-2ab+b^2+ac-bc+c^2+3ab\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)

 

 

 

 

 

Lê Chí Công
5 tháng 7 2016 lúc 13:02

a,(x+1)2

b,(a+c-b).{(a+c)^2+(a+c)b+b^2-3ac}

c,(a-c-b).{(a-c)^2+(a-c)b+b^2+3ac}

Nguyễn Hoàng Dương
Xem chi tiết
Yen Nhi
13 tháng 11 2021 lúc 19:23

\(a^3+b^3-c^3+3abc\)

\(=a^3+3ab.\left(a+b\right)+b^3-c^3-3abc-3ab.\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab.\left(a+b-c\right)\)

\(=\left(a+b+c\right).\left(a^2+ab+b^2-ab-ac+c^2\right)-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Khách vãng lai đã xóa
qiynbrhsksbx
Xem chi tiết
Trương Cẩm Nhung
Xem chi tiết
Anh Mai
25 tháng 6 2015 lúc 16:48

 Thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

Biến đổi vế trái thành: 

a^3+b^3+c^3-3abc 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c) 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c) 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)

sdf
28 tháng 6 2017 lúc 13:55

boc vai

Kwalla
Xem chi tiết
Toru
14 tháng 8 2023 lúc 21:57

M = (a + b + c)3 - a3 - b3 - c3

= (a + b)3 + c3 + 3(a + b)2c + 3(a + b)c2 - a3 - b3 - c3

= a3 + b3 + c3 + 3a2b + 3ab2 + 3(a + b)c(a + b + c) - a3 - b3 - c3

= 3ab (a + b) + 3c(a + b)(a + b + c)

= 3(a + b)[ab + c(a + b + c)]

= 3(a + b)(ab + bc + ac + c2)

= 3(a + b)[b(a + c) + c(a + c)]

= 3(a + b)(b + c)(c + a)

N = a3 + b3 + c3 - 3abc

= (a + b)3 + c3 - 3ab(a + b) - 3abc

= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)

= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]

= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ca - 2ac - 3bc - 3ab)

= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)