Tìm các số x và y thỏa mãn : x^2y^2-2xy^2+8xy-12x-4x^2y+6x^2+5y^2-20y+22=0
Tìm x, y thỏa mãn x2y2-2xy2+8xy-12x+6x2+5y2-4x2y-20y-22=0
tìm x.y
x2y2 - 2xy2 + 8xy - 12x - 4x2y + 6x2 + 5y2 - 20y + 22 = 0
Tìm tất cả các cặp số nguyên dương (x,y) thỏa mãn: 4x^4+12x^2y+5y^2=4x^2+8xy+5(x+y)-1
\(\Leftrightarrow4x^4+12x^2y+9y^2=4\left(x^2+2xy+y^2\right)+5\left(x+y\right)-1\)
\(\Leftrightarrow\left(2x^2+y\right)^2=4\left(x+y\right)^2+5\left(x+1\right)-1\)
\(\Leftrightarrow\left(8x^2+4y\right)^2=64\left(x+y\right)^2+80\left(x+y\right)+25-41\)
\(\Leftrightarrow\left(8x^2+4y\right)^2=\left(8x+8y+5\right)^2-41\)
\(\Leftrightarrow\left(8x+8y+5\right)^2-\left(8x^2+4y\right)^2=41\)
\(\Leftrightarrow\left(8x+4y-8x^2+5\right)\left(8x+12y+8x^2+5\right)=41\)
Pt ước số cơ bản, bạn tự hoàn thành phần còn lại
cho các số x,y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Pt trên tương đương: (x2-2x+1)+(y2+2y+1)+(4x2+8xy+4y2)=0
<=>(x-1)2+(y+1)2+(2x+2y)2=0
<=>x=1;y=-1;x=-y
Vậy x=1;y=-1
Tìm các số nguyên x, y thỏa mãn đẳng thức sau:
a) 3x2+5y22=345
b) 5x2+5y2+8xy+2x-2y+2=0
b) 5x2 +5y2 +8xy + 2x-2y+2 = 0
(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0
(x+1)2 + (y-1)2 +(2x+2y)2 = 0
=> (x+1)2 = 0 => x = -1
(y-1)2 = 0 => y = 1
(2x+2y)2 = 0
KL: x = -1; y = 1
a) 3x2 +5y2 = 345
=> x2 chia hết cho 5
=> x chia hết cho 5
đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3
đặt y = 3z => 15t2+9z2 =69
⇒5t2 +3z2 =23
...
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
tìm gtnn
d. D(x) = 2x² + 3y² + 4xy-8x-2y + 18 e. E(x) = 2x² + 3y² + 4z²-2(x+y+z) + 2 f F(x)=2x² +8xy + 11y2-4x-2y+6 g. G(x)=2x²+2y+z²+2xy-2xz-2yz-2x-4y h. H(x)=x² + y²-xy-x+y+1 Bài 2: Tim GTLN của các biểu thức sau a. A=4x²-5y² +8xy+10y+12
b.B=-x²-y²+xy+2x+2y
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
cho x,y thuộc R và x,y >0 thỏa mãn: x^2-2xy+x-2y<0 Tìm GTLN của A= x^2 -5y^2 +3x
mik chỉ giải được khi bé hơn hoặc bằng 0 thôi bạn thông cảm nha
x^2-2xy+x-2y<hoặc bằng 0
x(x+1)-2y(x+1)<hoặc bằng 0
(x+1)(x-2y)< hoăc bằng 0
mà x+1>0 do x>0
nên x-2y < hoặc bằng 0
x<hoặc bằng 2y suy ra 3x bé hơn hoặc bằng 6y
A=x^2-5y^2+3x
=x^2-4y^2-y^2+3x
=(x-2y)(x+2y)-y^2+3x < hoặc bằng (x-2y)(x+2y)-y^2+6y-9+9 =(x-2y)(x+2y)-(y-3)^2+9 bé hơn hoặc bằng 9 do cả hai cái tích và bình phương trên đều bé hơn hoặc bằng 0
suy ra GTLN của A=9 tại y=3,x=6