Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Quá
Xem chi tiết
Phượng Hoàng
Xem chi tiết
phạm tường vy channel
Xem chi tiết
QuocDat
2 tháng 2 2020 lúc 21:17

\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)

Vậy HPT có nghiệm.....

Khách vãng lai đã xóa
QuocDat
2 tháng 2 2020 lúc 21:29

\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)

Vậy HPT có nghiệm.....

Khách vãng lai đã xóa
QuocDat
2 tháng 2 2020 lúc 21:33

\(\hept{\begin{cases}x\sqrt{3}+2y=-10\\x-y\sqrt{3}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\sqrt{3}\\x\sqrt{3}+2y=-10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\sqrt{3}\\y\sqrt{3}\left(\sqrt{3}\right)+2y=-10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\sqrt{3}\\y=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\sqrt{3}\\y=-2\end{cases}}\)

Vậy HPT có nghiệm....

Bài nhiều á nên mình làm 2 bài 1 lần cho dễ nhìn 

Khách vãng lai đã xóa
Aoi Amamiya
Xem chi tiết
vũ tiền châu
25 tháng 12 2017 lúc 21:36

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\left(x-2\right)=2-y\\\left(y+1\right)^2\left(y-2\right)=2\left(2-z\right)\\\left(z+1\right)^2\left(z-2\right)=3\left(2-x\right)\end{cases}}\)

nhân từng vế của pt , ta có \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2\left(x-2\right)\left(y-2\right)\left(z-2\right)=6\left(2-x\right)\left(2-y\right)\left(2-z\right)\)

\(\Leftrightarrow\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\right]\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\)

đến đây thì dễ rồi, sẽ => x=2, hoặc y=2 hoặc z=2, thay vao rồi giải nhé

Aoi Amamiya
25 tháng 12 2017 lúc 23:12

thank you Vũ Tiền Châu ^^

vũ tiền châu
26 tháng 12 2017 lúc 12:30

kcj bạn

Bui Huu Manh
Xem chi tiết
hello7156
Xem chi tiết
Trên con đường thành côn...
24 tháng 12 2021 lúc 21:04

Ta có:

\(\left\{{}\begin{matrix}4x+y+2z=4\\3x+6y-2z=6\end{matrix}\right.\)

\(\Rightarrow\left(4x+y+2z\right)+\left(3x+6y-2z\right)=4+6=10\)

\(\Leftrightarrow7x+7y=10\)

\(\Leftrightarrow x+y=\dfrac{10}{7}\)

Do x, y nguyên dương nên không có x, y, z thoả mãn đề bài.

Tề Mặc
Xem chi tiết
Dương Lam Hàng
21 tháng 6 2019 lúc 11:00

\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^3-x-2x-2=2-y\\y^3-y-2y-2=2\left(2-z\right)\\z^3-z-2z-2=3\left(2-x\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(x^2-1\right)-2\left(x+1\right)=2-y\\y\left(y^2-1\right)-2\left(y+1\right)=2\left(2-z\right)\\z\left(z^2-1\right)-2\left(z+1\right)=3\left(2-x\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left[x\left(x-1\right)-2\right]=2-y\\\left(y+1\right)\left[y\left(y-1\right)-2\right]=2\left(2-z\right)\\\left(z+1\right)\left[z\left(z-1\right)-2\right]=3\left(2-x\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(x^2-x-2\right)=2-y\\\left(y+1\right)\left(y^2-y-2\right)=2\left(2-z\right)\\\left(z+1\right)\left(z^2-z-2\right)=3\left(2-x\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\left(x-2\right)=2-y\\\left(y+1\right)^2\left(y-2\right)=2\left(2-z\right)\\\left(z+1\right)^2\left(z-2\right)=3\left(2-x\right)\end{cases}}\)

Nhân các vế của 3 phương trình với nhau ta được:

\(\left(x+1\right)^2\left(x-2\right)\left(y+1\right)^2\left(y-2\right)\left(z+1\right)^2\left(z-2\right)=6\left(2-y\right)\left(2-z\right)\left(2-x\right)\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=-6\left(y-2\right)\left(z-2\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\left(y-2\right)\left(x-2\right)\left(z-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\right]=0\)

Vì \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6>0\)

Nên \(\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-2=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}}\)

Vậy x = y = z = 2

Tề Mặc
21 tháng 6 2019 lúc 11:09

Dương Lam Hàng Bạn cất công thật, cảm ơn nhé

Nguyễn Linh Chi
21 tháng 6 2019 lúc 11:33

Nhầm chút rồi nè:

\(\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\Leftrightarrow\)x=2 hoặc y=2 hoặc z=2

( không phải dấu và "{" đâu nhé)

+) Với x =2; thay vào ta có: \(\hept{\begin{cases}2-y=0\\y^3-3y-2=4-2z\\z^3-3z-2=0\end{cases}\Leftrightarrow}y=z=2\)

Đo đó x=y=z=2

+) Với y=2 tương tự...

+) Với z=2 tương tự...

Kết luận :...

Phương Tuyết
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Trần Hữu Ngọc Minh
22 tháng 4 2018 lúc 20:29

=.=,kệ t,miễn có kết quả đúng đc roy,tại t bay vô thấy cách này nên ko suy nghĩ nhiều