tính nhanh
a) (105+155-55):55
b) (1+2+3+....+100) . (12+22+32+...+1002).(65.111-13.15.17)
Tính giá trị biểu thức
(1+2+...+100)(1^2+2^2+...+10^2)(65.111-13.15.17)
Tính
a) ( 1 - 2 )2 + ( x -4 )3 + ( 4 - 5 )4 + ...+ ( 99 - 100 )99
b) 12 - 22 + 32 - 42 + 52 - 62 + ...+ 992 - 1002
Giúp mk nhanh nha! Mơn trc
Tính giá trị của biểu thức sau
A=210.13+210.65
28.104
B=(1+2+3+…+100)(12+22+…+102)(65.111-13.15.37)
B=C*[13*37*(5*3-15)]=0
\(A=\dfrac{2^{10}\cdot78}{2^8\cdot26\cdot4}=\dfrac{78}{26}=3\)
1 tinh nhanh
a)19.(-64)+(-76).34
b)136. (-68) +16.(-272)
c)19991999.1998-19981998.1999
d)(2+6+8+10+...+100).(36.333-108.111)
e)(1^2+2^2+3^2+...+10^2).(1+2+3+...+100).(65.111-13.15.17)
ai lam het dc thi tui bai phuc luon
TINH : ( 25.3.4.125.6.8) . ( 2+22+23+24+...+2100).(65.111-13.15.17)
Tính nhanh: a) (21-1)*(21-2)*(21-3)*...*(21-21)
b) 3*27*8+4*35*6+2*38*12
c) A=(1001+1002+1003+..+2009)*(360*87-360*32-360*55)
giúp mình với
a. (21 - 1) x (21 - 2) x (21 - 3) x ... x (21 - 21)
= 20 x 19 x 18 x ... x 0
= 0
b. 3 x 27 x 8 + 4 x 35 x 6 + 2 x 38 x 12
= (3 x 8) x 27 + (4 x 6) x 35 + (2 x 12) x 38
= 24 x 27 + 24 x 35 + 24 x 38
= 24 x (27 + 35 + 38)
= 24 x100
= 2400
c. A = (1001 + 1002 + 1003 +... + 2009) x (360 x 87 - 360 x 32 - 360 x 55)
= (1001 + 1002 + 1003 + ... + 2009) x [360 x (87 - 32 - 55)]
= (1001 + 1002 + 1003 + ... + 2009) x (360 x 0)
= (1001 + 1002 + 1003 + ... + 2009) x 0
= 0
(1^2+2^2+3^+....+10^2).(65.111-13.15.17)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
(1^2+2^2+3^+....+10^2).(65.111-13.15.17)
=(1^2+2^2+3^2+...+10^2).(65.111-13.555)
=(1^2+2^2+3^2+...+10^2).(65.111+13.5.111)
=(1^2+2^2+3^2+...+10^2).(65.111+65.111)
=(1^2+2^2+3^2+...+10^2).[111.(65-65)
=(1^2+2^2+3^2+...+10^2).(111.0)
=(1^2+2^2+3^2+...+10^2).0
=0
let S be 1!(12+1+1)+2!(22+2+1)+3!(32+3+1)+...+100!(1002+100+1). Find S+1/101!.(as usual, k! = 1.2.3.....(k-1).k)
Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!
By definition, n(n + 1)n! + n! = n! + n(n + 1)!
Therefore, S can be simplified as
1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!
So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)
\(=...\)
\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)
\(=\dfrac{101!+100\cdot101!}{101!}\)
\(=1+100=101\)
Hence, \(\dfrac{S+1}{101!}=101\)
(25.3.4.125.6.8).(2+22+23+24+...+2100).(65.111-13.15.17)
GIÚP MK DIỄN GIẢI RA NHA ! THANKS NHÌU !