Chứng minh rằng giá trị B + 1 với B = 11+112+...............+119 là Bội của 5
chứng minh rằng giá trị biểu thức: M=1+11+11^2+...+11^9 là bội của 5
Chứng tỏ rằng:
a) Giá trị của biểu thức A = 5 + 5 2 + 5 3 + . . . + 5 8 là bội của 30.
b) Giá trị của biểu thức B = 3 + 3 3 + 3 5 + 3 7 + . . . + 3 29 là bội của 273
a, A = 5 + 5 2 + 5 3 + . . . + 5 8
= 5(1+5)+ 5 2 (1+5)+ 5 3 (1+5)+...+ 5 7 (1+5)
= 30+5.30+ 5 2 .30+...+ 5 6 .30
= 30.(1+5+ 5 2 +..+ 5 6 )
Vậy A là bội của 30
b, B = 3 + 3 3 + 3 5 + 3 7 + . . . + 3 29
= 3 1 + 3 2 + 3 4 + 3 7 1 + 3 2 + 3 4 +...+ 3 27 1 + 3 2 + 3 4
= 273+273. 3 6 +...+ 3 26 .273
= 273.(1+ 3 6 +...+ 3 26 )
Vậy B là bội của 273
Chứng tỏ rằng:
a) Giá trị của biểu thức A = 5 + 5 2 + 5 3 + … + 5 8 là bội của 30.
b) Giá trị của biểu thức B = 3 + 3 3 + 3 5 + 3 7 + … + 3 29 là bội của 273
Chứng minh rằng:
a ) A = 1 11 + 1 12 + 1 13 + ... + 1 20 > 1 2 b ) B = 1 5 + 1 6 + 1 7 + ... + 1 16 + 1 17 < 2 c ) C = 1 10 + 1 11 + 1 12 + ... + 1 18 + 1 19 < 1
a) A > 1 20 + 1 20 + ... + 1 20 ⏟ 10 s o = 10 20 = 1 2 .
b) B = 1 5 + ... 1 9 + 1 10 + ... + 1 17 < 1 5 + ... + 1 5 ⏟ 5s o + 1 8 + ... + 1 8 ⏟ 8s o = 2
c) C = 1 10 + 1 11 + 1 12 ... + 1 18 + 1 19 < 1 10 + 1 10 + ... 1 10 ⏟ 9 s o = 1
Chứng minh rằng:
a ) A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 2 b ) B = 1 6 + 1 7 + 1 8 + ... + 1 18 + 1 19 < 2 c ) C = 1 10 + 1 11 + 1 12 + ... + 1 99 + 1 100 > 1
a) A = 1 12 + 1 13 + 1 14 + ... + 1 22 > 1 22 + 1 22 + ... 1 22 ⏟ 11 s = 11 22 = 1 2 .
b) B = 1 6 + ... 1 9 + 1 10 + ... + 1 19 < 1 4 + ... + 1 4 ⏟ 4 s o + 1 10 + ... + 1 10 ⏟ 10 s o = 2
c) C = 1 10 + 1 11 + ... + 1 100 > 1 10 + 1 100 = ... + 1 100 ⏟ 90 s o = 1 10 + 90 100 = 1
1/ Chứng tỏ rằng :
a. Giá trị của biểu thức A= 5+ 52+...............+ 58 là bội của 30
b. Giá trị cảu biểu thức B= 3+32 +.....................329 là bội của 273
Chứng minh rằng ab+1 là số chính phương với a=11..112(n số 1), b=11...14(n soos1)
\(ab+1=\left(10.111...1+2\right)\left(10.111...1+4\right)+1=\)
\(=\left(10.111...1\right)^2+6.10.111...1+8+1=\)
\(=\left(10.111...1\right)^2+2.3.10.111...1+3^2=\left(10.111...1+3\right)^2\) Là số chính phương
Giúp em bài này với !
Bài 1 : Tính giá trị biểu thức :
ax - ay + bx - by với a + b = 15, x - y = -4
Bài 2 : Chứng minh rằng nếu 2 số a, b là hai số nguyên khác 0 và a là bội của b; b là bội của a thì : a = b hoặc a = -b
Bài 3 : Tính S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + .... + 2001 - 2002 - 2003 + 2004 + 2005
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự