Cho ∆ABC vuông tại A và đường cao AH. HD và HE lần lượt là đường cao của ∆ABH và ∆AHC
Cm:a,AB^2/AC^2=HB/HC
b,AB^3/AC^3=DB/EC
Cho ∆ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Cm:
a) AD. AB=AE. AC=HC. HB
b) DA. DB+EA. EC=HB. HC
c) AE. AB+AD. AC=AB. AC
d) AH^3 =BD. CE. BC
e) 1/HD^2 + 1/HC^2 = 1/HE^2 + 1/HB^2
f) AB^3/AC^3 = DB/EC
g) BD.√CH + CE√CH = AH√DC.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi HD, HE lần lượt là đường cao của tam giác AHB và tam giác AHC. Chứng minh rằng:
a,\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b,\(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(BD\cdot BA=BH^2\)
\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(CE\cdot CA=CH^2\)
\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)
Cho tam giác ABC vuông tại A. Vẽ đường cao AH, HD, HE lần lượt là đường cao của các tam giác ABC AHB AHD. Chứng minh:
a) AB^2/AC^2= HB/HC
b) AB^3/AC^3=DB/EC
Mình đang cần gấp, mong mọi người giúp
Cảm ơn
Cho tam giác ABC vuông tại A, đường cao AH. Gọi HD, HE lần lượt là đường cao của tam giác AHB và tam giác AHC. Chứng minh rằng:
a,\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b,\(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)
a) Xét tam giác ABC vuông tại A có AH là đường cao => AB2 = BH.BC; AC2 = HC.BC (Hệ thức lượng trong tam giác vuông)
Do đó: \(\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\)
b) Từ \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)=> \(\frac{AB^4}{AC^4}=\frac{HB^2}{HC^2}\)
Xét tam giác AHB vuông tại H có HD là đường cao => BH2 = BD.AB ( Hệ thức lượng)
Xét tam giác AHC vuông tại H có HE là đường cao => HC2 = EC.AC
Do đó: \(\frac{AB^4}{AC^4}=\frac{BD.AB}{EC.AC}\)=> \(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi HD, HE lần lượt là đường cao của tam giác AHB và AHC. CMR:
a)\(\frac{AB^2}{AC^2}=\frac{HB}{AC}\)
b)\(\frac{AB^3}{AC^3}=\frac{DH}{EC}\)
Cho tam giac ABC vuông tại A đường cao AH ,E và F lần lượt là hình chiếu của H trên AB và AC . Cm a. EB/FC=AB/AC b. AC^2 / AB^2 = HC/HD c. BC.DE.CF=AH^3
cho tam giác ABCvuông tại A,đường cao AH ;HD;HE lần lượt là đường cao của tam giác AHBvà AHC
chúng minh
a)\(\dfrac{AB^2}{AC}=\dfrac{HB}{HC}\)
B)\(\dfrac{AB^3}{AC^3}=\dfrac{DB}{EC}\)
a: \(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)
b: \(\dfrac{DB}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
Cho tam giác ABC vuông tại A, đường cao AH. HD, HE lần lượt là các đường cao của tam giác AHB và tam giác AHC. Chứng minh:
a)\(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC};\)
b) \(\dfrac{AB^2}{AC^2}=\dfrac{DB}{EC}\)
câu b là \(\dfrac{AB^3}{AC^3}=\dfrac{DB}{EC}\)
mình ghi nhầm
cho tam giác ABC, đường cao AH. gọi ,E lần lượt là chân đường cao hạ từ H xuống AB và AC. CMR
a,AB^2/AC^2=HB/HC
b,AB^3/AC^3=DB/CE
giải gúp mình câu b nha
Tương tự: https://h.vn/hoi-dap/question/392113.html