Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Quỳnh Trang
Xem chi tiết
Hồ Thu Giang
19 tháng 10 2016 lúc 14:01

a, \(A=1+2+2^2+2^3+...+2^{100}\)

=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)

=> \(A=2A-A=2^{101}-1\)

=> \(A+1=2^{101}\)

b, \(B=3+3^2+3^3+...+3^{2005}\)

\(3A=3^2+3^3+3^4+....+3^{2006}\)

=> \(2A=3A-A=3^{2006}-3\)

=> \(2A+3=3^{2006}\)là lũy thừa của 3

=> Đpcm

Ice Wings
19 tháng 10 2016 lúc 14:10

a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)

Lấy 2A-A ta có: 

\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(\Rightarrow A+1=2^{101}-1+1\)

\(\Rightarrow A+1=2^{101}\)

b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)

\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)

\(\Rightarrow2B=3^{2006}-3\)

\(\Rightarrow2B+3=3^{2006}-3+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3         ĐPCM

Thành Trần
17 tháng 9 2021 lúc 18:17

9+8^2+8^3+...8^50

Khách vãng lai đã xóa
Phạm Ngọc Minh
Xem chi tiết
Trần Đình Thiên
24 tháng 7 2023 lúc 15:36

A=50+51+...+599

=>5A=5+52+53+...+5100

=>5A-A=4A=(5+52+...+5100)-(50+51+...+599)=5100-1

=>4A+1=5100

Phạm Đình Khánh Đoan
Xem chi tiết
Bùi uyên ly
Xem chi tiết
JOKER_Võ Văn Quốc
7 tháng 8 2016 lúc 10:07

3A=3+32+33+....+32008

2A=(3+32+....+32008)-(1+3+...+32007)=32008-1

vũ lê anna
Xem chi tiết
Trần Bảo Khánh
10 tháng 10 2017 lúc 21:15

3A=\(3+3^2+3^3+...+3^{11}\)

3A-A=(\(3+3^2+3^3+...+3^{11}\))-(\(1+3+3^2+...+3^{10}\))

2A=\(3^{11}-1\)

2A+1=\(3^{11}\)

nguyen hao thao
10 tháng 10 2017 lúc 21:15

lai sai

vũ lê anna
10 tháng 10 2017 lúc 21:20

Thanks

Nguyen Dao Hanh Dung
Xem chi tiết
Hoàng Thị Ngọc Linh
7 tháng 8 2016 lúc 10:04

\(A=1+3+3^2+...+3^{2007}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)

\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)

\(\Rightarrow2A=3^{2008}-1\)

\(\Rightarrow2A+1=3^{2008}\)

Nguyen Dao Hanh Dung
Xem chi tiết
Hoàng Thị Ngọc Linh
7 tháng 8 2016 lúc 10:10

\(A=1+3+3^2+...+3^{2007}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)

\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)

\(\Rightarrow2A=3^{2008}-1\)

\(\Rightarrow2A+1=3^{2008}\)

Nhớ k cho mk nha!!!

huỳnh hà ngọc thư
Xem chi tiết
Mr Lazy
26 tháng 6 2015 lúc 9:39

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(\Rightarrow2A-A=\left(2^{21}+2^{20}+...+2^2\right)-\left(2^{20}+2^{19}+...+2^2+2\right)\)

\(\Rightarrow A=2^{21}-2\)

vũ lê anna
Xem chi tiết