B= (x-3)^2 - (x-11)^2
C= (x+1)(x-2)(x-3)(x-6)
Tìm Min hoặc Max
a)A=(x-3)^2+(x-11)^2
b)B=(x+1)(x-2)(x-3)(x-6)
a) Ta có \(A=\left(x-3\right)^2+\left(x-11\right)^2=x^2-6x+9+x^2-22x+121=2x^2-28x+130\)
\(=2\left(x^2-14x+49\right)+32=2\left(x-7\right)^2+32\ge32\)
Vậy minA = 32 khi x = 7.
b) \(B=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x=t\Rightarrow B=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
minB = -36 khi t = 0 hay \(x^2-5x=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Tìm Min:
B= (x-3)^2 - (x-11)^2
C= (x+1)(x-2)(x-3)(x-6)
\(B=x^2-6x+9-x^2+22x-121\)
\(=16x-112\)
\(C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(=\left(x^2-5x\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=0 hoặc x=5
Tìm min
A=(x-2)^2+|x-1|+5
B=2(x+1)^2-|x+3|-11
Tìm min
A=(x-2)^2+|x-1|+5
B=2(x+1)^2-|x+3|-11
B1:Tìm min A= \(\frac{x^2-2x+9}{x^2}\)
B2: Tim min B=\(\frac{12}{x-1}\)+ \(\frac{x}{3}\) với x\(\ge\)1
B3: Tìm min C= /x-10/+/x-11/+/x-12/+/x-13/
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân
1, Tìm Min :
a, A = 6/ -2x^2 - 3
b, B= x^2 - 3x + 3 / x^2 - x +1
2, Tìm max:
D = x/(x+1)^2
bài 1 : tìm x biết
a, ( x - 2 ) : 2 x 3 = 6
b, X : ( hỗn số 3 1/2 x hỗn số 2 2/3 ) = 9/56
c, 1 + 3 + 5 + .....+ ( 2 x X + 1 ) = 625
bài 2 : tìm x biết
a, ( x - 1/2 ) x 5/3 = 7/4 - 1/2
b, 5 x X + X = 42
c, ( x+1 ) + ( x+ 3 ) + ( x + 5 ) + ....+ ( x + 11 ) = 58
bài 3 tìm x biết
a, X - 1,25 x 4 = 7,5
b, X = ( hỗn số 6 3/5 : 6 - 0 , 125 x 8 + hỗn số 2 2/15 x 0,03 ) x 2/11
c, ( X + 1 ) +(X + 2 ) + ( X + 3 ) + ....+(X + 20 ) = 750
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)