giúp mik câu hỏi này vs nhé: 3^201+4^202+5^203
giúp mk vs nhé : tìm chữ số tận cùng của:3^201+4^202+5^203
3^201+4^202+5^203
=.......7+.......6+.........5
=.........3+..........5
=....8
Vậy chữ số tận cùng của:3^201+4^202+5^203 là 8
nhớ kick cho mình nha
bạn vũ ngọc nương ơi sao mk làm =4 vậy bạn
giúp mình làm 2 câu này nhé!
-1-2-3-4-5-.........-199-200-201-202
1-3+5-7+...........+97-99+101
cho D=1/7^2-2/7^3+3/7^4-4/7^5+.....+201/7^202-202/7^203. Hãy so sánh D với 1/64. Giúp em với, em cảm ơn ak.
8(%7#2;3786(23#;8%7;23#?3#](?;32%78(23;%(3*2;]34((46(;13846(1;58]63#;?%]3;?85?;3]%68%63(#8%,8632;6%]3;6?%8%,3]?8%23#;8%3#2;%68((14?+^#]?&$%3]3#;(+3]4}](#^&?+(:^?%+(},]?%]}^^?,}#]?,#6?*6*3,#3,](6,(6,3]?73%,]7?%]83#?87%3#,?7%,]?7%3#],?%+78)76}#,^*],)#+/(#})(#]}]7?3#68]7}#(])}7+)](^]74(3+)(+7/4?}(*@?/3#?7^{%79{}7^?#/})7},#(7?:%#?:%*)7#6}?/+?+(7^,;{*?%;{,?+?%^{},?+{#,/%?^&]{#,?,]{?^+3(?^&%3/?(+,3/?^%+?+^#/%3^?}%+#/%?^}?&?%}&#/,?%^+#?}/^+7(}7#+/6?)/}#+76)#/?}7+#/}??7+%/}#??{7#}+%?{,+}#^8^kết quả là *,%^*^#,#61?*%*^^?,#^?%$ chúc bạn học giỏi nhe :)))
Bằng 5^57/7,71 cách giải 12:0,1+7/^1-729=5^57/7,71
5^57/7,71-3:3x2+2:4=5^57/7,71
Chúc bạn học giỏi nhe :)))) 👍👍👍👍👍👍👍👍👍
Vậy thì D sẽ > 1/64 nha
Chu pa pi pồ nhà nhố.....!!!!
cho D=1/7^2-2/7^3+3/7^4-4/7^5+.....+201/7^202-202/7^203. Hãy so sánh D với 1/64. Giúp em với, em cảm ơn trc ak.
Bằng 1%^77%/7100 vậy D sẽ > 1/64
D bé hơn hoặc lớn hơn hoặc bằng 1/64
1-2+3:2-3+4:3-4+5:...:201-202+203
Tính 1+2-3-4+5+6-.....+201+202-203-204
vì 204 chia hết 4 ta ghép 4 số liên tiếp lại một cặp sau đó được bao nhiêu mổi cặp rồi nhân lên
Cho A=201/202+202/203+203/204 và B= 201+202+203/202+203+204
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)\(+\)\(\frac{202}{202+203+204}\)\(+\)\(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204
=> \(\frac{201}{202}\)> \(\frac{201}{202+203+204}\)( 1 )
Vì 203 < 202 + 203 + 204
=> \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)( 2 )
Vì 204 < 202 + 203 + 204
=> \(\frac{203}{204}\)> \(\frac{203}{202+203+204}\)( 3 )
Cộng vế với vế của ( 1 ), ( 2 ) và ( 3 )
=> \(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
Các bạn giúp mk nha : tính nhanh dãy số sau :\(1-2+3-4+5+6+7-8+...+201-202+203\)
Sửa đề \(1-2+3-4+5-6+7-8+...+201-202+203\)
Đặt \(A=1-2+3-4+5-6+7-8+...+201-202+203\)
ta có từ 1 đến 202 có 202 số hạng. nhóm 2 số thành một nhóm ta có \(202\div2=101(\)nhóm\()\)
\(\Rightarrow\)\(A=(1-2)+(3-4)+(5-6)+(7-8)+...+(201-202)+203\)
\(A=(-1-1-1-1-...-1)+203\)
\(A=-101+203\)
\(A=102\)
Vậy A =102
chúc bạn học tốt
cách tốt nhất để tính đó chính là ..................................................................................................................................................................................................................................................................................................................sử dụng máy tính cầm tay
1-2+3-4+5-6+7-8+...+201-202+203
= ( -1 )+ ( -1 ) +(-1 ) + (-1 ) +... + (-1 ) + 203
= (-1 ). \([\) ( 202 - 1 ) : 1 + 1 \(]\):2 + 203
= (-1 ) . 101 + 203
= -202 + 203
= 1
cho D=1/7^2-2/7^3+3/7^4-4/7^5+.....+201/7^202-202/7^203. Hãy so sánh D với 1/64.
em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)