Tứ giác ABCD có O là giao điểm của hai đường chéo , AB = 6 , OA = 8 , OB = 4 , OD = 6 . Tính độ dài AD .
Cho tứ giác ABCD có O là giao điểm của 2 đường chéo, AB=6cm, OA=8cm, OB=4cm, OD=6cm. Tính AD
Tức giác ABCD ,o làm giao của e đường chéo. Biết AB=6,OA=8,OB=4,OD=6.AD=?
Violympic đúng ko
Ta có AB = OD = 6cm
=> OB = AD = 4 cm
Vậy nha
tứ giác
ABCD có O là giao điểm 2 đường chéo, AB=6cm;OA=8cm;OB=4cm;OD=6cm. Tính AD
hình bn tự vẽ nha
cách giải, bn tham khảo ở đây nha
https://diendan.hocmai.vn/threads/cho-tu-giac-abc-co-o-la-giao-diem-2-duong-cheo.242620/
Cho tứ giác abcd; ac cắt bd tại o; oa=8; ab=6; ob=4; od=6; tính độ dài ad
1) Tứ giác ABCD có \(\widehat{A}-\widehat{B}=50^{^{ }o}\), Các tia p.g của các góc c và D cát nhau tại I và tính các góc A và B
2) Tứ giác ABCD có O là giao điểm của 2 đường chéo, AB=6. OA=8, OB=4, OD=6. Tính độ dài AD
3) Cho tứ giác ABCD, \(\widehat{B}+\widehat{D}=180^o,CB=CD\) CMR AC là p.g \(\widehat{BAD}\)
Giúp mk vs!!!!!!!!!!!
cho tứ giác ABCD.Gọi O là giao điểm của hai đường chéo AC và BD.
a)Chứng minh:AB+BC+CD+AD/2<OA+OB+OC+OD<AB+BC+CD+AD
b)Khi O là điểm bất kì trong tứ giác ABCD,kết luận trên có đúng không?
Cho tứ giác ABCD. Gọi AC giao BD tai O. Có AB = 6; OA=8; OD=6; OB=4. Hỏi AD = bao nhiêu
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
b,khi O là một điểm bất kì thuộc miền trong tứ giác ABCD thì kết luận trên có đúng không
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>DC\)
\(OD+OA>AD\)
Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)
\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )
Theo bất đẳng thức tam giác ta có:
\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)
Cộng vế theo vế ta có:
\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)
\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra đpcm.
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
Gọi O là giao điểm hai đường chéo AC và BD
Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)